
On Convergence and Reliability in Self-Configuring Virtual Topologies

ARSO SAVANOVIĆ
Smart Com d.o.o.

Brnčičeva 45
1001 LjubljanaČrnǔce

SLOVENIA 

Abstract: - Virtual Private Networks (VPNs), Peer-to-Peer networks (P2P), active networks, and overlay research
testbeds are examples of virtual topologies on top of the underlying IP infrastructure. Due to the ubiquitous and
cost-effective nature of the Internet, the virtual topologies on top of Internet are becoming ever more popular and
widespread. However, automatic configuration and management facilities are a necessary prerequisite for successful
large scale deployment of virtual topologies. We have developed an automatic discovery protocol for virtual topologies,
which has been documented more thoroughly in our previous work. This paper focuses on the analysis of reliability
and convergence of this virtual topology self-configuration protocol.

Keywords:- protocol, self-configuration, virtual topology, adaptive system, convergence, reliability

1 Introduction

Virtual Private Networks (VPNs), Peer-to-Peer networks
(P2P), active networks, and overlay research testbeds are
examples of virtual topologies on top of the underlying IP
infrastructure. Virtual topologies can be categorised into
two distinct classes: edge virtual topologies comprise only
end-hosts and are statically predefined based on user or ap-
plication requirements, while core virtual topologies com-
prise distinguished network nodes and they do not depend
on user and application requirements. Thus, in the lat-
ter case it is beneficial for the virtual topology that each
distinguished node be directly connected only with neigh-
bour distinguished nodes. Such virtual topology optimally
matches the underlying IP infrastructure.

The autonomy of network elements is among the im-
portant networking paradigms, which simplify administra-
tion and management of networks and consequently con-
tribute towards better network scalability. The autonomy
of network elements encompasses the use of various mech-
anisms and protocols, which automate different adminis-
tration and management tasks, such as configuration of el-
ements, fault detection and recovery, detection of changes
and element reconfiguration, etc. Manual administration
of network elements is unacceptable in large scale net-
works, which is even more the case when one considers
the dynamic nature of IP networks. Virtual topologies
are built on top of the dynamic IP infrastructure. Conse-

quently, distinguished nodes should be able to adaptively
search for and connect with neighbour distinguished nodes
and, thus, adaptively maintain a virtual topology, which
optimally matches the current state of the underlying IP
infrastructure. This calls for a mechanism, which enables
distinguished nodes to automatically and dynamically dis-
cover their neighbours in a virtual topology.

In a virtual topology neighbour distinguished nodes are
generally not directly connected, i.e. there may be one or
more plain nodes (routers) between them. This makes
neighbour discovery in a virtual topology a non-trivial
problem and fundamentally different from physical neigh-
bour discovery.

In our previous work we have presented a solution for
this problem in the form of a network protocol for neigh-
bour discovery in virtual topologies. The neighbour dis-
covery protocol is characterised by some important prop-
erties, most notably its reliability, convergence delay, and
overhead. In this paper we inspect more closely the con-
vergence and reliability issues related to the protocol op-
eration and consequetly to the self-cofiguration of virtual
topologies.

2 Self-configuring virtual topologies

The problem of neighbour discovery in physical networks
is trivial: a node simply transmits the “who is there?” mes-

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp418-422)



sage on the physical link and the neighbour at the other
end of the link is able to receive this message and return
its identity in response.

However, this simple principle cannot be applied in a
virtual topology, where neighbours are generally not di-
rectly connected, but are insteadvirtual neighbours, i.e.
there may be one or more plain routers between them.
This makes neighbour discovery in a virtual topology a
non-trivial task and fundamentally different from physical
neighbour discovery.

The straightforward approach is to manually configure
each distinguished node with addresses of its neighbour
distinguished nodes. However, this is an administrative
nightmare and it scales poorly due to the fact that both,
data networks and virtual topologies on top of them are
dynamic systems, whereas manual configuration is a static
operation.

The protocol we have developed enables distinguished
nodes in the network to atomatically and dynamically dis-
cover neighbouring distinguished nodes and, thus, facili-
tates self-configuring virtual topologies [9, 10, 2].

The protocol is essentially used by distinguished nodes
to constantly poll the status of the underlying IP network.
Whenever a network change is detected, which is relevant
for the structure of the optimal virtual topology, distin-
guished nodes update their configuration and consequently
also update the structure of the virtual topology.

The protocol uses three message types and operates in
two different modes, the coordination mode and the dis-
covery handshake mode. A node coordinates its activities
with other members of the virtual topology by periodically
advertising itself to other nodes via an emulated communi-
cations bus and by processing other nodes’ advertisements.
The core of the protocol is the discovery handshake, which
performs the majority of tasks related to neighbour discov-
ery, detection of changes, and node (re)configuration.

Figure 1 illustrates the operation of the neighbour detec-
tion protocol. Each member of a virtual topology keeps
an updated table of known virtual neighbours, which con-
tains neighbour IDs and an associated timer that facilitates
the aging of neighbour entries (soft state). A node in vir-
tual topology advertises itself by periodically (with the pe-
riod of TOHW ) transmitting the advertisement message
Hello_World to an emulated communications bus, which
distributes the advertisement to all other members of the
same virtual topology. The implementation of an emulated
communications bus can be multicast-based, with one ded-
icated multicast group per virtual topology, server-based,
or a combination of both.

Upon reception of an advertisement message from a
node, other nodes in the virtual topology each send the

Figure 1: Protocol operation overview

“advertiser” their IDs within the Hello message. If the
source node and the advertiser are virtual neighbours, then
the Hello message reaches the advertiser, which in re-
sponse returns its own ID within the Hi message. How-
ever, if the source node and the advertiser are not virtual
neighbours, then the actual virtual neighbour, i.e. the first
node of the virtual topology, which is en route to the adver-
tiser, intercepts and blocks the Hello message and responds
with the Hi message containing its own ID. In any case,
the sender receives the Hi message from its actual virtual
neighbour and either refreshes (for known neighbours) or
adds (for a new neighbour) the entry for this node in the
neighbour list. When a neighbour’s entry in the neighbour
list times out, the neighbour is deleted from the neighbour
list and is not considered to be neighbour anymore by the
particular node.

Packet losses, which can occur in the Internet, are dealt
with in two ways: with periodic advertisements and with
timeouts for neighbour entries. The periodic advertise-
ments have the effect of message retransmission in case
of a detected loss: the Hello_World message spawns the
Hello/Hi exchange and when either of the three proto-
col messages is lost, then the next Hello_World advertise-
ments causes the “retransmission”, which eventually leads
to a successful sequence of all three protocol messages
and, thus, successful neighbour detection/refreshment. On
the other hand, timeout values for entries in the neighbour
list are set tom ∗ TOHW , wherem is a small integer.
Consequently a virtual topology node deletes its neighbour
from the neighbour list only after it has failed to receivem
consecutive Hi messages. This prevents erroneous dele-
tion of an actual neighbour when up tom − 1 consecutive
messages get lost during the transfer. Note, however, that
in spite of these mechanisms, which help the protocol deal

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp418-422)



with packet losses in the network, there is always a small
residual effect of these losses present, which makes the
protocol operation probabilistic. This is discussed further
in the next section.

3 Convergence and Reliability Analysis

In this section we are interested in convergence delay of
the neighbour detection protocol, more precisely in esti-
mating the upper bound on convergence delay. Conver-
gence delay is defined as a time difference between the
time, when a relevant change occurs in the network infras-
tructure, and the time, when this change has been success-
fully detected and self-configuring virtual topology up-
dated accordingly. Neighbour detection protocol has to
deal with the following basic scenarios for the network in-
frastructure change:

• a new virtual topology node is added to the network:
the new node and its neighbours have to mutually
detect and configure each other as neighbours and
a node has to detect optional “removal” of an exist-
ing neighbour due to the change (i.e. the new node
is placed in between two virtual neighbours, so the
former neighbour is effectively “removed” form the
neighbour list),

• an existing virtual topology node is removed from
the network infrastructure: neighbours have to both
detect the removal of a neighbour and detect “new”
neighbours, which show up after the removal of the
node,

• changes in the underlying Internet only, e.g.
router/link addition or removal: from the virtual
topology perspective these changes translate to one
of the three cases—removal of an existing neighbour,
addition of a new neighbour, and the combination of
both of the above—which have to be detected by vir-
tual topology nodes.

It turns out that the virtual neighbour detection as pre-
sented in section 2 performs the two functions (discov-
ery of a new neighbour and detection of the removal of
an existing neighbour) independently. The reason for this
is quite simple: a virtual topology node cannot be both at
the same time, a new neighbour and an existing neighbour
to some other node. Consequently, the convergence de-
lay can be analysed independently for these two cases, and
since we want to estimate the upper bound on convergence
delay, it suffices to analyse only the worst-case scenario
among the relevant scenarios listed at the beginning of this
section.

The worst-case scenario for the removal detection of an
existing neighbour is as follows: immediately after the vir-
tual neighbour of some node sends the last Hi message,
this neighbourhood relationship is broken due to a change
in the network, e.g. a route changes or the neighbour
node crashes/is actually removed. The maximum con-
vergence delayTCDMAX corresponding to this event is
given as (1).

TCDMAX = m ∗ TOHW + RTTMAX/2 (1)

The first term of (1) reflects the fact that a node deletes
its neighbour from the neighbour list only after it detects
m consecutive missing messages Hi from the neighbour,
in order to account for packet losses in the network (see
section 2). The second term represents the transfer delay
of the last Hi message from the (former) neighbour, where
RTTMAX represents the maximum round trip delay be-
tween a pair of nodes in a virtual topology and is typically
around 1s. Note that despite the above, packet losses in the
network can cause the node to temporarily and erroneously
delete the neighbour from the neighbour list. The proba-
bility of this erroneous event can be obtained after a short
derivation and is given withPERR = (1 − (1 − pL)3)m,
wherepL gives the probability of a packet loss in the net-
work. Thus, the reliability of the protocol, i.e. the proba-
bility that the protocol operates as desired in spite of net-
work losses, is given as (2).

PREL = 1 − PERR = 1 − (1 − (1 − pL)3)m (2)

Typically, network losses are in the rangepL = 2% ÷

5%. If we want the reliability of the protocol to be, for
example,PREL ≥ 99.9% for these typical losses, thenm
should be set tom ≥ 4 according to (2).

The worst case scenario for the detection of a new neigh-
bour, on the other hand, is when:

• a change causing some node to get a new neighbour
occurs immediately after the last Hello_World mes-
sage of that particular node has been distributed via
an emulated communications bus and

• due to packet losses only then-th following sequence
of Hello_World/Hello/Hi messages has been success-
ful.

The maximum convergence delayTCUMAX correspond-
ing to this event is given as (3), whereRTTMAX repre-
sents the maximum round trip delay between a pair of vir-
tual topology nodes.

TCUMAX = n ∗ TOHW + RTTMAX (3)

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp418-422)



Note thatn can be arbitrarily large (albeit with an ex-
tremely small probability) due to packet losses. Again,
a short derivation shows that the probability that the
new neighbour is detected within the time window of
TCUMAX , i.e. only aftern messages Hello_World, is
given with (2), wherem is replaced withn. Thus, equa-
tion (2) again represents the reliability of the neighbour
detection, although with a slightly different meaning. If
we again assume typical network loss probability and want
the reliability of the protocol to be e.g.PREL ≥ 99.9%,
then (2) yieldsn ≥ 4.

Finally, to provide an example of a complete protocol
configuration, we must select an appropriate value for the
retransmission periodTOHW . Since neighbour detection
is in many ways analogous to routing protocols in IP net-
works, we want the convergence delays of the two to be
comparable. Given that the OSPF is among the best Inter-
net routing protocols in this respect and that its typical con-
vergence time is around 30s÷40s, we conclude from (1),
(3), and from typical values forn, m, andpL that the value
of TOHW ≈ 10s yields a delay for virtual neighbour de-
tection, which is comparable to the OSPF convergence de-
lay.

4 Conclusions

Due to the ubiquitous and cost-effective nature of the Inter-
net, the virtual topologies on top of Internet are becoming
ever more popular and widespread. However, automatic
configuration and management facilities are a necessary
prerequisite for successful large scale deployment of vir-
tual topologies.

In this paper we have shortly described a discovery pro-
tocol for self-configuring virtual topologies and analysed
its operation with respect to reliability and convergence
delay. The results of the analysis indicate that protocol
parameters can be configured in a trade-off manner, such
that the protocol meets the criteria and expectations with
regards to the two properties. We note that there are other
important properties of the protocol, most notably proto-
col overhead, which should be considered and can pose
contradictory requirements.

The networking community has already developed vari-
ous discovery mechanisms for virtual topologies, for some
examples see e.g. [11, 1, 12, 8, 13, 4, 14, 5, 3]. However,
majority of this work does not deal with neighbour dis-
covery and topology adaptation, but rather with topology
mapping, server discovery, and service discovery in vir-
tual topologies, which is not directly related to our work.
Furthermore, as far as the author is aware, there are some
simulation results but no analytical evaluation results for

the discovery mechanisms, which are more closely related
to our work, most notably [6, 7].

Acknowledgement

The work presented in this paper has been sponsored by
the Ministry of Science and Technology of Republic of
Slovenia. Most of the work has been carried out at the
Jožef Stefan Institute in Ljubljana, Slovenia.

References

[1] Yuri Breitbart, Minos Garofalakis, Rajeev Rastogi,
S. Seshadri, and Avi Silbershatz. Topology discovery
in heterogeneous ip networks. InIEEE INFOCOM
2000, 2000. Tel Aviv, Israel.

[2] Lawrence Cheng, Alex Galis, Arso Savanović, Borka
Jerman Blažǐc, and Janez Bešter. Self-Management
GRID Services—A Programmable Network Ap-
proach. Lecture Notes in Computer Science,
(3038):141–148, 2004.

[3] Prithviraj Dasgupta. Incentive Driven Node Dis-
covery in a P2P Network Using Mobile Intelligent
Agents. InProceedings of the International Confer-
ence on Artificial Intelligence, IC-AI ’03,, volume 2,
pages 750–756, June 2003.

[4] Adriana Iamnitchi and Ian Foster. On Fully Decen-
tralized Resource Discovery in Grid Environments.
In Proceedings of International Workshop on Grid
Computing, November 2001.

[5] Pedram Keyani, Brian Larson, and Muthukumar
Senthil. Peer Pressure: Distributed Recovery from
Attacks in Peer-to-Peer Systems. InProceedings of
the NETWORKING 2002 Workshop: Web Engineer-
ing and Peer-to-Peer Computing, pages 306–320,
May 2002.

[6] Sylvain Martin and Guy Leduc. RADAR: Ring-
based Adaptive Discovery of Active neighbour
Routers. InIWAN 2002, pages 62–73, December
2002.

[7] Sylvain Martin and Guy Leduc. A Dynamic Neigh-
bourhood Discovery Protocol for Active Overlay
Networks. InIWAN 2003, pages 151–162. Springer-
Verlag, December 2003.

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp418-422)



[8] A. Rowstron and P. Druschel. Pastry: Scalable,
Distributed Object Location and Routing For Large-
Scale Peer-to-Peer Systems. InProceedings of In-
ternational Conference on Distributed Systems Plat-
forms, pages 329–350, November 2001.

[9] Arso Savanovíc. Automatic Discovery of Neighbour
Active Network Nodes. Technical Report IJS DP-
8725, Jožef Stefan Institute, Jamova 39, 1000 Ljubl-
jana, Slovenia, January 2003.

[10] Arso Savanovíc and Borka Jerman Blažič. Dynamic
neighbour discovery for self-organising active net-
works. InProceedings of ConTEL 2003, pages 213–
219. University of Zagreb, 2003. June 11–13, 2003,
Zagreb, Croatia.

[11] R. Siamwalla, R Sharma, and S. Keshav. Discover-
ing internet topology. Submitted to IEEE INFOCOM
’99, 1999.

[12] Skitter. http://www.caida.org/tools/

measurement/skitter/.

[13] Ion Stoicaet. al. Chord: A Scalable Peer-to-peer
Lookup Service for Internet Applications. InPro-
ceedings of SIGCOMM 2001, pages 149–160, Au-
gust 2001.

[14] B. Yang and H. Garcia-Molina. Improving Search in
Peer-to-Peer Networks. InProceedings of Interna-
tional Conference on Distributed Computing Systems
ICDCS’02, pages 5–14, July 2002.

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp418-422)


