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Abstract: - The hierarchical network proposed (Multi-RBFNN), is composed of complete Radial 
Basis Function Neural Networks (RBFNNs) that are in charge of a reduced set of input 
variables with the property of which every Sub-RBFNN can take charge of a set of input 
variables and not of all. For the optimization of the whole net, we propose a new method to 
select the more important input variables, which is capable of deciding which of the chosen 
variables go alone or together to a Sub-RBFNN to build the hierarchic structure Multi-RBFNN, 
thus reducing the dimension of the input variable space for each RBFNN. We also provide an 
algorithm which automatically finds the most suitable topology of the proposed hierarchical 
structure and selects the more important input variables for it.  
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1. Introduction 
 
RBFNNs is universal approximations, it 
corresponds to a particular class of function 
approximation that can be trained using a 
set of samples of I/O. On the other hand, 
when the structure of a RBFNN is complex 
(not hierarchical), a direct consequence is 
the production of a big network, with a big 
number of hidden units that it produce a big 
quantity of computational parameters and 
this impedes the convergence of the 
learning process and increases the 
requirements of memory and time. An 
effective solution is to incorporate a 
hierarchical structure adapted to solve 
problems of complex models. The ideas of 
modulating neural networks are essential 
for hierarchical designs [1][2][3][4]. In 
problems of function approximation, when 
increases the number of input variables, the 
number of parameters increases 
exponentially. A direct consequence is to 
have a huge network, with big number of 
neurons in the hidden layer that hinders the 
convergence of the process of training of 
the network. The hierarchical structure of 
radial basis function networks proposed 
(Multi-RBFNN) divides at first the problem 
of the function approximation in smaller 

problems based on the more important 
input variables that have been selected and 
which of these selected variables will be go 
alone or together in a Sub-RBFNN. The 
final structure is a hierarchical series of 
RBFNNs connected in parallel with an total 
output that is the linear sum of all the 
outputs of Sub-RBFNNs. This topology 
facilitates to solve problems that can be 
combined to gain access to a complex 
solution. Once the number of Sub-RBFNNs 
is known, the hierarchical structure Multi-
RBFNN is constructed. In every Sub-
RBFNN, which presents a radial basis 
function network (RBFNN), they optimized 
the parameters of the RBFNN (centres, 
radios, weight); using an efficient algorithm 
of clustering to initialize the value of the 
centres in every Sub-RBFNN. To optimize 
the values of the radius in every Sub-
RBFNN, we used traditional algorithms. 
When the parameters of centres and radius 
of every Sub-RBFNN have been initialized, 
a method of linear calculation is used to 
find the exact values of the weight in the 
whole hierarchical system that minimizes 
the cost function calculated on the set of 
samples of I/O data. 
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2. The Architecture Of The 
Multi-RBFNN System 
 

In RBFNNs every neuron in the hidden 
layer receives all the input variables of the 
network. Nevertheless, the interconnections 
in the hierarchical structure Multi-RBFNN 
between input variables and the hidden 
layer are limited and located. The 
advantage of the hierarchical structure 
Multi-RBFNN consists of the fact that the 
problem divides into many problems that 
connected in parallel. Every problem 
presents a RBFNN named Sub-RBFNN. 
All the Sub-RBFNN has a total output that 
is the output of the hierarchical structure 
Multi-RBFNN. This division of the system 
Multi-RBFNN limits the quantity of the 
information of the previous layer. In 
general, to construct a hierarchic structure 
Multi-RBFNN to solve problems of 
function approximation consists of two 
basic steps: 
 
• The identification of the structure 

(input variables selection, distribution 
of the selected input variables to the 
number Sub-RBFNNs, the number of 
Sub-RBFNNs depends on the number 
of the selected input variables and on 
which of these variables go alone or 
together in a Sub-RBFNN). 

 
• The estimation of the parameters of 

every Sub-RBFNN (centres , radius ScG
sr and weight , and the number of 

radial functions RBF in each Sub-
RBFNN), and the calculation of the 
total output f(x) of the hierarchical 
structure Multi-RBFNN. 

Sw

 
Fig. 1 presents the principal steps of the 
proposed algorithm. Fig. 2 presents the 
proposed hierarchical Multi-RBFNN 
system. Each one of the nodes of Fig. 2 is a 
Radial Basis Functions Network (see Fig. 
3). RBFNNs can be seen as a particular 
class of Artificial Neural Networks ANNs. 
They are characterized by a transfer 
function in the hidden unit layer having 
radial symmetry with respect to a centre. 
The basic architecture of an RBFNN is a 3-
layer network. The output of the net is 

given by the following expression: The 
output of the net is given by the following 
expression:  
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where { : 1,..., }i i mφΦ= =  are the basis 
functions set and wi the associate weights 
for  
every RBF. The basis function φ  can be 
calculated as a gaussian function using the 
following expression:  
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where cG  the central point of the function 
φ  and r the radius.  

Fig. 1. Principal steps of the proposed 
algorithm 

 Select the most important input variables, using the method 
proposed in this paper. (Sec.3) 

Select the variables that go alone or together to a Sub-RBFN 
(Sec.3) 

Optimize the Parameters of every Sub-RBFN (Centres, Radius, 
and Weight). (Sec.4) 

Optimized the suitable number of basis function RBF in every 
Sub-RBFN. (Sec.4) 

Calculate the total output f(x) of the structure Multi-RBFN and 
minimize the approximation of the system Multi-RBFN. (Sec.4) 

 

Fig. 2. The hierarchical structure Multi-RBFNN.
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Fig. 3. Each of the sub-networks is a 
RBFNN 
 
The calculation of the weight does not 
depend on every output of every Sub-
RBFNN {F1(x),…,FS (x)}, but it depends on 
the total output of the system Multi-
RBFNN, and must be calculated in the 
linear form like in the following expression: 
 

( )
1 1

( , , )
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s s
i i
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Where  is 
the of activation matrix of the set of basis 
functions in all Sub-RBFNNs, 

{ : 1,..., , 1,..., }s s
i i i n SφΦ = = = s

s
iw  the 

associate weight of all Sub-RBFNN and S 
is the number of Sub-RBFNN. The process 
of the linear optimization of the weight 
depends to the activation matrix of the total 
output of the Multi-RBFNN ( )f x . This 
process uses the direct methods as the 
singular value decomposition (SVD) to 
calculate the values of the weight s

iw .  
 
The proposed hierarchical structure Multi-
RBFNN decreases the number of 
parameters which decrease the complexity 
of the approximate system and increases the 
efficiency of the process of function 
approximation from a set of examples of 
I/O data data. 
 
3. Input Variables Selection For The 

Structure Multi-RBFNN 
 
The input variables selection (IVS) tries to 
reduce the dimension of variables of input 
space and create a new set of input 
variables. This process of identification and 
elimination of so much irrelevant and 

redundant information as they are possible, 
reduces the dimensionality of the date set 
and allows algorithms of learning works 
more rapid and effectively. 
 
The curse of the dimensionality [5] refers to 
the exponential approximation of the hyper-
volume as a function of dimensionality. 
RBFNN can be planned as interrelations of 
input space to output space, it have to cover 
or represent each part of his input space in 
order to know how that part of the input 
space should be mapped. Covering the 
input space takes resources, and in the most 
general case, the amount of resources 
needed is proportional to the hyper-volume 
of the input space. The exact formulation of 
resources and part of the input space 
depends on the type of the network and 
should probably be based on the concepts 
of information theory and differential 
geometry [6].The curse of the 
dimensionality cause networks with many 
irrelevant inputs that behave relatively 
badly, when the dimension of the input 
space is high the network uses almost all 
his resources to represent irrelevant parts of 
the input space.  Even if we have a network 
algorithm which is able to focus on 
important portions of the input space, the 
higher the dimensionality of the input 
space, the more data may be needed to find 
what is important and what is not.  A priori 
information can help with the curse of 
dimensionality. Input variable selection 
fundamentally affects the severity of the 
problem, as well as the selection of the 
neural network model. [7]. 
 
In this section we propose a new method 
for input variables selection for the problem 
of function approximation, and more 
specifically for our Multi-RBFNN system. 
This method considers a simple calculation 
to select the input variables. The selection 
of the input variables will do by the 
following steps: 
 

1) Relate each possible input 
dimension of data {x1 ,…,xd} with 
the dependent variable  y (as a 
function in one dimension), as in 
the following expression: 

{ }1 2 3 d( , ) , ( , ) , ( , ) , . . . , ( , )x y x y x y x y  
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2) Divide the date in each dimension in P 

parts (the number of the parts depends 
on the number of the input data n, y 
when the number of the input data is big, 
and the number of parts P must 
increase). This division is obtained by 
means of the following expression: 

( ){ }1   1, , ; 1, ..., ; 1, ...,j k j
i ii

P x P k n i d j− ≤ < = = =
G … p  

where n is the number of data of I/O, ( )k

i
xG  

it is the component ith of the input vector kth. 
 

3) Associate the data of each dimension to 
corresponding output data as in the 
following expression: 

( ){ } ( )1,k k j k
i ii i

jx y P x P− ≤ <
G G  

4) Use the Kalman filter to smooth the 
vectors of the maximum and minimums 
in each part, and calculate the distance 

j
iD  between the maximum and the 

minimum values of the output in each 
partition of the input variable xi: 

max( ) min( ) 1,....j k k
i j jD y y j= − = p  

5) Finally, for each input variable xi we 
calculate the mean of distances iD . The 

smaller iD , is the most important input 
variable for the problem, since this 
implies that the other variables affect 
very little to the output variable for 
every fixed value (partition interval) of 
xi. Fig. 4 presents, in a schematic way, 
the general description of the proposed 
IVS method. For all the parts the 
average of the distance is calculated D . 

 
4. SIMULATION EXAMPLES 
 
In this section different examples will be 
appear to verify the procedure in the 
proposed algorithm. Two types of results 
will be present: the structure of the system 
Multi-RBFNN selected by the algorithm 
using the method of IVS and which of the 
input variables must go alone or together a 
Sub-RBFNN in the system Multi-RBFNN, 
and the results of the validity of algorithm 
in approximate functions from samples of 
information of I/O data, compared with 
results of a typical RBFNN that receives all 
the variables of the function and with other 

methods proposed in the bibliography. This 
way, the system Multi-RBFNN will be 
evaluated with his characteristics in 
decreases the number of parameters, which 
obtains the principal objective in the 
present work of the search of new 
architectures of calculation capable of 
shaping complex systems of function 
approximation, without the increase of the 
number of input variables has to suppose an 
exponential increase in the complexity of 
the system.  
 

Relate each dimension of the input data {x1, …, xd} to the target output as a 
function of dimension. 

Divides the data in parts P. 

Uses the Kalman filter to smooth the vectors of the maximum and minimums in 
each part. 

Associate the data of each dimension to his corresponding output data 

Calculate the mean distance in each dimension. 

D  > θ ? No 

Select the variable 

Yes

Remove the variable

Calculate the value of distance D between the maximum and minimum values 
of the target output in each part. 

 

Fig. 4. General description of the method 
IVS. 
The presents results of 5 executions; the set 
of radial functions used in the Sub-RBFNN 
{RBF} that there is considering the 
algorithm (every time there is added 1 
RBF), # Param is the number of 
parameters. NRMSETr is the normalized 
mean squared error of training and 
NRMSETest is the normalized mean squared 
error of test.  
 
4.1. First Example f1(x) 

 
We will take an example with 6 possible 
input variables to choose from. Let us 
consider a set of 20000 I/O data pairs 
randomly taken from the function.  

2
1 1 2 3 4 5

1 2 3 4 5 6

( ) 10 ( ) + 20 ( -0.5)  + 10  + 5  + 0 
, , , , ,   [0,1]

6f x sen x x x x x x
x x x x x x

π= ⋅

∈
 

where each input variable is defined in the 
interval [0,1]. The proposed algorithm 
selects the ideal architecture of the system 
Multi-RBFNN for the function f1(x), 

 

Proceedings of the 8th WSEAS International Conference on APPLIED MATHEMATICS, Tenerife, Spain, December 16-18, 2005 (pp228-233)



depends to the value of the variance 
threshold after analyzing every variables 
(Fig. 5). 

Fig. 5. The variance for each variable in 
f1(x) 
In the function f1(x) few variables must go 
alone to Sub-RBFNN and the subset of the 
rest goes to Sub-RBFNN, as in the Fig. 6. 
 

 
(a) (b) 

Fig. 6. (a) Structure Multi-RBFNN selected
by the algorithm. (b) Structure of a classic
RBFNN for the current function 
 

 

(a)

(b)

Fig. 7. Comparison result between Multi-
RBFNN system and Classical RBFNN. (a)
In the number of parameters. (b) In the
number of RBF.  

 
Table I NRMSE of training and test obtained by 
the proposed algorithm and by classic RBFNN 
for the function f1(x) 
 
4.2 Second Example f2(x) 
 
The training and test sets have been formed 
by 25000 randomly points. 

2 2(-2 ) 
2 1 8 4 5 6

1 2 3 4 5 6 7 8

( ) 2 (2  ) + 6 + 7.5 (  )+ 0 
, , , , , , , ,   [0,1]

x x
7f x cos x x e x x x x

x x x x x x x x
π ⋅= ⋅ ⋅ ⋅

∈
The algorithm selects the ideal architecture 
of the system Multi-RBFNN, depends to 
the value of the variance threshold after 
analyzing every variables (Fig. 8). 

 

(a)

 

 

(b)

Fig. 8. The variance in different data 
number. (a) For each variable. (b) For 
each subset of two variables 
 
In the function f2(x) tow subset of tow 
variables go to Sub-RBFNN and the subset 
three variables go to Sub-RBFNN, as in the 
Fig. 9. 
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Table III NRMSE of training and test obtained 
by the proposed algorithm and by classic 
RBFNN for the function f2(x) 
 

(a) (b) 

Fig. 9. (a) Structure Multi-RBFNN selected
by the algorithm. (b) Structure of a classic
RBFNN for the current function 
 
5. CONCLUSIONS 

 
A fundamental limitation in the problem of 
approximation systems is that when the 
number of input variables increases, the 
number of parameters usually increases in a 
very rapid way, even exponentially. This 
phenomenon prevents the use of the 
majority of conventional modelling 
techniques and forces us to look for more 
specific solutions. To deal with this 
problem, we have searched for new 
architectures for modelling complex 
systems in function approximation 
problems. The new hierarchical network 
proposed is composed of complete Radial 
Basis Function Networks that are in charge 
of a reduced set of input variables. For this 
architecture, we have proposed a new 
method to select the more important input 
variables, thus reducing the dimension of 

the input variable space for each RBFNN. 
The selection of the hierarchical structure 
Multi-RBFNN adapted according to the 
selected number of input variables and 
which of these variables go alone or 
together in a Sub-RBFNN.  
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