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1. Introduction

In some signal processing applications like
adaptive filtering it is necessary to solve the Re-
cursive Least Squares problem. Some examples
are channel or multichannel equalization, echo
cancellation, . . .

Parallel algorithms for solving the RLS prob-
lem using mainly systolic architectures can be
found in [5], [6], [7], . . . In this paper we propose a
parallel algorithm for solving this problem, based
on a variant of the Kalman filter, [1], using shared
and/or distributed memory parallel architectures.

The proposed parallel algorithm can be used in
heterogenous systems without loss of parallel al-
gorithmic properties.

First, we will show a variant of the Kalman fil-
ter to solve the Recursive Least Squares problem.
Then the sequential algorithm will be stated and fi-
nally, the parallel algorithm will be derived show-
ing some experimental results.

Notation: Boldface typing denotes a vector or a
matrix, otherwise the variable will be scalar. A
superscript with an asterisc (∗) denotes the conju-
gate transposed of a matrix.

1.1. Relation between the Kalman filter and
the Recursive Least Squares problem

The Kalman filter can be used to solve the re-
cursive state-space estimation of a system. We
consider the next state-space model that is useful
to relate the recursive state-space estimation prob-
lem with the recursive least squares problem [1]:

xi+1 = λ−1/2xi

yi = Hixi + vi

where xi ∈ Cn×1 is the state vector, yi ∈ Cq×1 is
the observation vector, vi ∈ Cq×1 is the observa-
tion noise vector, Hi ∈ Cq×n is the measurement
matrix, 0 � λ ≤ 1, q � n, and i ≥ 0. The Kalman
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filter computes recursively the linear least-mean
squares estimation of the state with the knowledge
of the observations and some system parameters.

There are many algorithmic variants of the
Kalman filter [1], [2]: the information filter,
the square root Kalman filter or covariance fil-
ter, the extended square-root information filter,
the square-root Chandrasekhar filter, the explicit
Chandrasekhar filter, . . . . We are interested in
the extended square-root information filter due to
its simplicity and its high parallelization potential.
The details of this algorithm are:
for i = 0, 1, 2, . . .

AiΘi = Bi (1)
x̂i+1 = λ−1/2x̂i + Kp,i

[
R−1/2

e,i ei

]
(2)

end for
where

Ai =


λ1/2P−∗/2i λ1/2H∗i
x̂∗i P−∗/2i y∗i
λ−1/2P1/2

i 0



Bi =


P−∗/2i+1 0

x̂∗i+1P−∗/2i+1 e∗i R−∗/2e,i

P1/2
i+1 −Kp,i



and x̂i ∈ Cn×1, x̂0 = x0, Pi ∈ Cn×n, P−∗/20 = Π
−∗/2
0 ,

Hi ∈ Cq×n, yi ∈ Cq×1, ei = yi −Hix̂i ∈ Cq×1, Re,i =

cov(ei) ∈ Cq×q, and Kp,i = cov(xi+1, ei) ∈ Cn×q.
Usually q � n. Θi is an orthogonal transforma-
tion that partially lower triangularizes the matrix
that postmultiplies and can be got with a sequence
of Givens rotations. If P−1

i is positive definite, then
we can factorize it as the product of its Cholesky
triangles P−1

i = P−∗/2i P−1/2
i , so P1/2

i is upper trian-
gular and P−∗/2i is lower triangular.

In [1], [2] we can find that the least squares
problem xLS related to y = Kx0 + v can be
solved recursively with a Kalman filter if we
rewrite y = Kx0 + v = ∆Hx0 + v, with ∆ =

diag(1, λ−1/2, λ(−1/2)2
, . . .), and considering x̂i =

(λ−1/2)ix̂0, P−1
0 = εIn, with ε a sufficient small pos-

itive number, and xLS = x̂0.
We can rewrite the algorithm in a more conve-

nient way:

C0 =


P−∗/20

x̂∗0P−∗/20
P1/2

0

 ; Λ =


λ1/2In 0 0

0 1 0
0 0 λ−1/2In


for i = 0, 1, . . .ΛCi,


λ1/2H∗i

y∗i
0



 Θi =

Ci+1,


0

e∗i R−∗/2e,i

−Kp,i




x̂i+1 = λ−1/2x̂i + Kp,i

[
R−1/2

e,i ei

]

x̂0 = (λ1/2)i+1x̂i+1

end for
The cost of the iteration is O(qn2), when q � n,

[1], [2], [4].

2. Parallel algorithm

Let us suppose that we have p = 3 processors:
P0, P1, and P2. The parallel algorithm must com-
pute the equations (1) and (2).

2.1. Data partition

A matrix or vector enclosed within square
brackets with a processor subscript denotes that
part of the matrix or vector is in such processor.
If it is enclosed within parenthesis then it denotes
that the entire matrix or vector is in such proces-
sor.

The vector x̂i will be (always) in the last proces-
sor (P2 in this case). The Ci matrix will be divided
by columns (n0 columns belong to P0, n1 columns
to P1, and n2 columns to P2, with n0 +n1 +n2 = n).
The last q columns of Ai denoted as Di will be ini-
tially in P0. So the initial data partition will be as
shown:

Ai =
(

Λ [Ci]P0 Λ [Ci]P1 Λ [Ci]P2 (Di)P0

)

Di will be manipulated in a pipelined way by
all the processors, so the processor subscript will
change accordingly. The data prepared by P j for
P j+1 will be denoted as (D+

i )P j , and these data in
the P j+1 memory space will be denoted as (D−i )P j+1 .
Again, the data prepared by P j+1 for P j+2 based on
(D−i )P j+1 will be denoted as (D+

i )P j+1 and so on.
Inside (Di)−P0

, λ1/2H∗i will be divided by rows in
p parts (three in this example with n0, n1, and n2
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rows respectively). The zero submatrix of (Di)−P0

will be divided in the same parts. We will ob-
serve that the number of the nonzero elements of(
D−/+i

)
P j

will be always q(n + 1) in any P j at any
time.

2.2. Processors tasks

Let us suppose that P0 gets zeroes in the first n0

rows of λ1/2H∗i by applying a sequence of Givens
rotations denoted by Θi,P0 :

A′i = AiΘi,P0

=

(
Λ [Ci]P0 Λ [Ci]P1 Λ [Ci]P2

(
D−i

)
P0

)
Θi,P0

=



Λ [Ci]P0 Λ [Ci]P1 Λ [Ci]P2



(
λ1/2H∗i

)
n0(

λ1/2H∗i
)
n1(

λ1/2H∗i
)
n2

y∗i
(0)n0
(0)n1
(0)n2


P0



Θi,P0

=



[Ci+1]P0 Λ [Ci]P1 Λ [Ci]P2



(0)n0(
λ1/2H∗i

)′
n1(

λ1/2H∗i
)′
n2

y∗′i
(Li)n0
(0)n1
(0)n2


P0



=

(
[Ci+1]P0 Λ [Ci]P1 Λ [Ci]P2

(
D+

i

)
P0

)

We can observe that the data not belonging to
P0 are not involved in the operations. The n0 rows
of

(
λ1/2H∗i

)
n0

are zeroed and n0 rows of nonzero el-

ements, (Li)n0 , appear below y∗′i , as a consequence
of the Givens rotation sequence application. We
can observe too that the first n0 columns of the re-
sult A′i are the first n0 columns of the matrix Ai+1

(except the λ1/2 and λ−1/2 factors). This is use-
ful to get a pipelined behaviour in the work of the
processors.

Now, if P0 transfers
(
λ1/2H∗i

)′
n1

,
(
λ1/2H∗i

)′
n2

, y∗′i ,
and (Li)n0 , —these are the q(n + 1) floating point
numbers that form the nonzero part of (Di)+

P0
— to

P1, naming it as (Di)−P1
, then

A′′i = A′iΘi,P1

=

(
[Ci+1]P0 Λ [Ci]P1 Λ [Ci]P2

(
D−i

)
P1

)
Θi,P1

=



[Ci+1]P0 Λ [Ci]P1 Λ [Ci]P2



(0)n0(
λ1/2H∗i

)′
n1(

λ1/2H∗i
)′
n2

y∗′i
(Li)n0
(0)n1
(0)n2


P1



Θi,P1

=



[Ci+1]P0 [Ci+1]P1 Λ [Ci]P2



(0)n0
(0)n1(

λ1/2H∗i
)′′
n2

y∗′′i
(Li)′n0
(Mi)n1
(0)n2


P1



=

(
[Ci+1]P0 [Ci+1]P1 Λ [Ci]P2

(
D+

i

)
P1

)

P1 can get already zeroes in the n1 rows of(
λ1/2H∗i

)′
n1

with the application of the Givens ro-
tation sequence Θi,P1 and P0 could work already
with its part of Ai+1 (pipelined algorithm). Again,
if P1 transfers the nonzero part of (Di)+

P1
, to P2 —

q(n + 1) floating point numbers—, then P2 can get
already zeroes in the n2 rows of

(
λ1/2H∗i

)′′
n2

with the
application of the Givens rotation sequence Θi,P2

and P1 could work already with its part of Ai+1

(pipelined algorithm):

A′′′i = Bi

= A′′i Θi,P2

=

(
[Ci+1]P0 [Ci+1]P1 Λ [Ci]P2

(
D−i

)
P2

)
Θi,P2

=



[Ci+1]P0 [Ci+1]P1 Λ [Ci]P2



(0)n0
(0)n1(

λ1/2H∗i
)′′
n2

y∗′′i
(Li)′n0
(Mi)n1
(0)n2


P2



Θi,P2

=



[Ci+1]P0 [Ci+1]P1 [Ci+1]P2



(0)n0
(0)n1
(0)n2
y∗′′′i

(Li)′′n0
(Mi)′n1
(N)n2


P2



=


[Ci+1]P0 [Ci+1]P1 [Ci+1]P2



(0)n0+n1+n2=n

e∗i R−∗/2e,i
−Kp,i


P2
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At the end, we got the expression in (1) by
means

AiΘi = AiΘi,P0Θi,P1Θi,P2 = Bi

in a pipelined way. At this time, P2 can update de
solution x̂0 (or xLS ):

x̂i+1 = λ−1/2x̂i + Kp,i

[
R−1/2

e,i ei

]

x̂0 = (λ1/2)i+1x̂i+1

Figure 1 shows graphically the pipelined paral-
lel algorithm. τ represents the data saving from
one iteration to the next, and initial values.

It is easy to extrapolate the tasks to a differ-
ent number of processors in the pipeline: the first
gets Hi and yi from the acquisition subsystem, gets
some zeroes in the last q columns of Ai, and trans-
fers these columns to the second processor. This
gets some zeroes in these columns and transfers
them to the next one, . . . , and the last one, gets
the last zeroes and updates the solution. We can
see that there are three kind of processors or tasks:
the first, the intermediate and the last. If there are
only two processors, only the first and the final
processor would exist.

2.3. Arithmetic cost

Le us suppose that n j columns of Ai (or Ci) have
been assigned to the P j processor.

1. If P j is the first processor then it must get the
data Hi and yi, and multiply H∗i by λ1/2: qn
floating point multiplications, so the cost is
O(qn).

2. P j must multiply
(
P−∗/2i

)
P j

by λ1/2, and(
P1/2

i

)
P j

by λ−1/2: n j(n+1) floating point mul-
tiplications, so O(n jn).

3. P j must get qn j zeroes in the last q columns
of Ai, calculating qn j Givens rotations and
aplying each of them to n + 2 entries. So the
cost is O(qn jn).

4. If P j is the last processor then it must update
the solution x̂0, so the cost is O(q2n).

Figure 1: Pipelined parallel algorithm for the RLS
problem.

So it does not matter if P j is either the first or
an intermediate or the last processor: the cost is
O(qn jn) due to steps 2. and 3. mainly.

2.4. Load balancing

In the pipelined algorithm, the processors load
must be tuned to avoid a processor is waiting,
so the best a priori load balancing criterion is
n j = n/p, where p is the number of processors, so
the cost would be O(qn2/p). This criterion can be
refined to get a more perfect load balancing. If we
compare this result with the results of the subsec-
tion 1.1 we can get a maximum relative speedup of
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p. So if we get a perfect load balancing, the defini-
tive efficiency or speedup will depend on the inter-
processor communication overload as explained
in the next subsection.

2.4.1. Automatic/adaptive load balancing and het-
erogeneous systems

We can reconfigure the load of every proces-
sor assigning more or less columns of Ci to
P j ([Ci]P j). We can do it before the algorithm
is running (in a test process —automatic load
balancing—) or when the algorithm is running —
adaptive or dynamic load balancing—. In this case
it is necessary to transfer the columns that will not
be used by a processor to the apropriate neighbour.

This scheme of variable load per processor is
suitable for using it with a heterogenous system:
the number of columns of Ci assigned to a proces-
sor should be proportional to its computational
power with the condition that all the processors
take the same time in its execution, so an added
(perhaps slower) processor will involve a new dis-
tribution of less columns per processor (less exe-
cution time).

2.5. Communication costs and multiprocessor
systems

A processor P j must transfer the nonzero part
of

(
D+

i

)
P j

to P j+1. These are q(n + 1) floating point
numbers.

If we use a distributed memory multiprocessor
message passing system using for example MPI,
then the cost is the time used to do this transfer
that depends on the network topology and the size
of this submatrix. Every processor of the figure 1
can be mapped in a processor of this system.

If we use a shared memory multiprocessor sys-
tem then every processor of the figure 1 can be
mapped in a processor of a shared memory multi-
processor using for instance OpenMP. In this case,
the data transfer can consist in the copy of this
data from the memory space of P j to the memory
space of P j+1 and control the access to it with a
typical producer-consumer strategy. The copy of
the data to the next processor memory space can

be an important time consuming operation. We
avoid this copy time using a circular buffer whose
elements are arrays of size q(n + 1) floating point
numbers, so the symbolic copy can consist in a
pointer to an element buffer updating. For exam-
ple, if

(
D−i

)
P j

denotes the data that is being pre-

pared by P j for P j+1 in the i iteration and
(
D+

i

)
P j

denotes de data already prepared by P j for P j+1,
then figures 2 and 3 show graphically the process
of the symbolic copy for P j when it has finished its
work for the next processor and the data prepared
by the preceeding one is available.

We extrapolate this ideas to a shared and dis-
tributed memory multiprocessors with minimum
change in the code.

Figure 2: Data is already available for P j

Figure 3: Data is already available for P j+1 (i−1)-
iteration . P j is working for P j+1 i-iteration.

3. Experimental results

The hardware was a cluster of two SMP made
up by two Intel(R) Xeon(TM) 2.20 GHz and 512
kB cache CPUs and 4GB of total memory. The
operating system was Red Hat 9 with a minimum
number of services running. We parallelized the
algorithm using MPI (MPICH 1.2.6) and OpenMP
with the Intel Fortran Compiler 8.0 using code op-
timization and openmp options. The communica-
tion among the threads of a SMP was by means
a buffer written and readed by them, using some
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variables to control the access. The communica-
tion among SMP nodes was by means of the send
a receive MPI functions. The load balancing crite-
rion was to assign the same number of columns to
each processor. Other algorithm parameters were
λ = 0.99999 and q = 1.

3.1. Scaled relative speedup

The parallel and sequential times considered
are the algorithm time per iteration. This time
is calculated obtaining the mode of all the itera-
tion times in a simulation in order to minimize the
measurements variance. Figure 4 shows the scaled
relative speedup S in the Y-axis of the parallel
system in four situations: ideal, using OpenMP
in a 2 processor SMP, using MPI in a cluster of
two nodes (with 1 processor per node) and us-
ing MPI+OpenMP in a cluster of 2 nodes (with 2
processor per node). In the X-axis appears de to-
tal number of processors of the parallel machine
and the size n of the problem in order to get a
scaled speedup. We can observe how speedup in-
creases such that the efficiency is approximately
maintained in the considered range of test.

4. Conclusions

We propose a parallel algorithm for solving the
RLS problem with a good scalability in the con-
sidered range This parallel algorithm has been
implemented without important changes in three
multiprocessor architectures: distributed, shared
and mixed memory systems. We got a very good
performance in a relatively cheap system like a
biprocessor SMP cluster.
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