
Parallelization of a Method for the Solution of the Inverse Additive
Singular Value Problem

GEORGINA FLORES-BECERRA† ‡, VICTOR M. GARCIA† and ANTONIO M. VIDAL†

†Departamento de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia
Camino de Vera s/n, 46022 Valencia

SPAIN
‡Departamento de Sistemas y Computación

Instituto Tecnológico de Puebla.
Av. Tecnológico 420, Colonia Maravillas, C.P. 72220, Puebla

MEXICO
gflores@dsic.upv.es, vmgarcia@dsic.upv.es, avidal@dsic.upv.es

Abstract: - This paper describes the parallelization of a method (proposed by Chu in [7]) to solve the Inverse
Additive Singular Value Problem (IASVP). The IASVP is a problem whose solution requires a high
computational cost, both in time and in memory. For example, the complexity of Chu’s method is O(n4) in time
and O(n3) in memory. Using parallel computing, the time needed to solve the problem has been substantially
reduced. The parallel algorithm developed has shown good experimental performance, confirming the theoretical
performance predicted and showing an acceptable scalability.

Key-Words: - Inverse Singular Value Problems, Parallel Algorithms, Newton-type methods

1 Introduction
The Inverse Eigenvalue Problem (IEP) and the
Inverse Singular Value Problem (ISVP) appear in
many science and engineering problems, such as
medical tomography, image processing, circuit design
or curve fit [6,11,12]. Both problems have as goal the
reconstruction of a matrix with given structure and
with pre-established eigenvalues or singular values. A
particular case of the ISVP is the Inverse Additive
Singular Value Problem, defined by Chu as [7]:
 Given n+1 real m×n matrices A0, A1, ..., An (m≥n)
and a set of real numbers σ*={S*1,S*2,...,S*n}, where
S*1≥S*2≥...≥S*n, find a real vector c=[c1,c2,...,cn]t,
such that σ* are the singular values of
 A(c) = A0 + c1A1 + ... + cnAn (1)
 The IASVP can be stated as a system of nonlinear
equations which can be solved with iterative Newton-
like methods. This was done in [10], adapting the so-
called Method I proposed by Friedland et al., to solve
the IEP [11]. The IASVP can be formulated as well
as a minimum square problems; a technique solution
can be found in [10]. This solution is based on the
Lift&Project method, proposed by Chen et al. in [4]
to solve the IEP.
 A different type of method for the solution of the
IASVP was developed by Chu in [7]; we denote this
method as MIII in this paper. MIII generalizes an
iterative process described first by Friedland et al., in
[11] to solve the ISVP. This is an iterative Newton-

like method, of fast convergence [2] and high
accuracy. However, as with most Newton-like
algorithms, its convergence relies heavily on the
quality of the initial approximation.
 MIII has been experimentally tested in [2,7] for
problems of size m=5, n=4 and in [9] for problems of
sizes 5≤m=n≤ 50, using sequential algorithms.
Experimental tests with larger sizes (for example
O(102,103)) would have very long execution times,
since MIII has high complexity in time (O(n4)) and in
space (O(n3)).
 The goal of this paper is the design of a parallel
version of the MIII method, so that larger problems
can be solved. This parallel algorithm complete a set
of parallel algorithms based on Newton-type methods
to solve the IASVP [9,10]. The main idea is to
incorporate the parallel MIII algorithm to a
specialized library for the resolution of the IEP and
the ISVP. This library is currently in the design and
development stages.
 The MIII method shall be briefly described in
Section 2. In Section 3 we will describe the parallel
SPMD algorithm; it has been implemented on a
distributed memory architecture. In Section 4 the
theoretical performance of the algorithm is discussed,
and some numerical results are presented. Finally, in
Section 5 we give our conclusions.

Proceedings of the 8th WSEAS International Conference on APPLIED MATHEMATICS, Tenerife, Spain, December 16-18, 2005 (pp43-48)

2 Method MIII
The basic operation of the MIII method [7] consists
of finding the intersection between the set G(σ*) of
the matrices whose singular values are the set σ*, and
the set L(c) of the matrices that can be written as in
(1). G(σ*) and L(c) can be expressed as:
 G(σ*) = {US*Vt | U∈ℜmxm,V∈ℜnxn,orthogonal}
 L(c) = {A(c) | c∈ℜn},
where S* = diag(S*1, S*2,...,S*n).
 MIII finds an approximation to the intersection of
G(σ*) and L(c) through an iterative method with two
distinct stages in each iteration.
 Thus, in the iteration k, given the matrix
X(k)∈G(σ*), the first stage is to find a line that is
tangent to the manifold G(σ*) at X(k) and which
intersects with L(c) at A(c(k+1)).
 As X(k)∈G(σ*), there exist orthogonal matrices
U(k) and V(k) such that
 X(k) = U(k)S*V(k)t. (2)
 Furthermore, as proved in [7], the vector tangent
to G(σ*) which starts in the point X(k) and reaches the
set L(c) at the point A(c(k+1)) can be expressed as:
 X(k) + X(k)Λ(k) - ϑ(k)X(k) = A(c(k+1)), (3)
where Λ(k) and ϑ(k) are skewsymmetric matrices
which, along with c(k+1), are the unknowns of equation
(3). Using (2), (3) can be written as:
 S* + S*L(k) - H(k)S* = W(k), (4)
where:

 L(k) = V(k)tΛ(k)V(k), H(k) = U(k)tϑ(k)U(k) and
 W(k) =U(k)tA(c(k+1))V(k). (5)
 By equating the diagonal elements in (4) the
following linear system is obtained [7]:
 J(k) c(k+1) = b(k)
where:
 J(k) = [ui

(k)tAj vi
(k)]i,,j=1,n (6)

 b(k) = S* - [ui
(k)tA0 vi

(k)]i=1,n (7)
Once this is solved, c(k+1), A(c(k+1)) and W(k) are
obtained. So, one of the unknowns in (4) is
computed, ending the first stage.
 If the off-diagonal elements in (4) are equated, the
unknowns H(k) and L(k) can be computed as follows
(see [7] for the details):

*

)(
)()(

j

k
ijk

ji
k

ij S
W

HH −=−= ; i=n+1,m; j=1,n (8)

2*2*

)(*)(*
)()(

)()(ji

k
ijj

k
jiik

ji
k

ij SS
WSWS

HH
−

+
=−= ; 1≤ i<j≤ n (9)

2*2*

)(*)(*
)()(

)()(ji

k
jij

k
ijik

ji
k

ij SS
WSWS

LL
−

+
=−= ; 1≤ i<j≤ n (10)

 The goal of the second stage in the iteration k is to
find a matrix X(k+1) in G(σ*) which approximates
A(c(k+1)):

X(k+1)≈A(c(k+1)).
 Matrix X(k+1) could be obtained from matrix X(k) by
expressing U(k+1) and V(k+1) in the way

U(k+1) =eH(k)U(k)
and

V(k+1) =eL(k)V(k),
(see [7] for details).
 Since eH(k) and eL(k) can be approximated as

eH(k) ≈++≈ 2)()(

2
1 kk HHI

1

)()(

2
1

2
1 −

⎟
⎠
⎞

⎜
⎝
⎛ −⎟
⎠
⎞

⎜
⎝
⎛ +≈ kk HIHI

and

eL(k) ≈++≈ 2)()(

2
1 kk LLI

1

)()(

2
1

2
1 −

⎟
⎠
⎞

⎜
⎝
⎛ −⎟
⎠
⎞

⎜
⎝
⎛ +≈ kk LILI ,

if we define the orthogonal matrices
1

)()()(

2
1

2
1 −

⎟
⎠
⎞

⎜
⎝
⎛ −⎟
⎠
⎞

⎜
⎝
⎛ += kkk HIHIR

and
1

)()()(

2
1

2
1 −

⎟
⎠
⎞

⎜
⎝
⎛ −⎟
⎠
⎞

⎜
⎝
⎛ += kkk LILIT ,

then an estimation of matrix X(k+1)=U(k+1)S*V(k+1)t can
be obtained from the matrices

U(k+1) = R(k)TU(k)t

and
V(k+1) = T(k)TV(k).

 Expression (3) guarantees that:
X(k+1) ≈ R(k)t(eH(k)A(k+1)e-L(k)) T(k),

(see [7] for details).
 Therefore, to compute X(k+1) the following systems
of equations (with multiple right hand sides):

)(
)(

)1(
)(

22
k

k
k

k

UHIUHI ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ + (11)

)(
)(

)1(
)(

22
k

k
k

k

VLIVLI ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ + (12)

must be solved to obtain U(k+1) and V(k+1). This
completes a single iteration of the method MIII.
 In [2] it was shown that MIII converges
quadratically to the solution of the IASVP, denoted as
c*. The full MIII algorithm is:

Proceedings of the 8th WSEAS International Conference on APPLIED MATHEMATICS, Tenerife, Spain, December 16-18, 2005 (pp43-48)

Sequential MIII Algorithm (SMIII)
1. Compute A(c(0)) in accordance with (1)
2. Compute svd(A(c(0))) = U(0)S(0)V(0)t
3. For k = 0,1,…, while ||U(k)tA(k)V(k) – S*||F > tol
4. Compute J(k) in accordance with (6)
5. Compute b(k) in accordance with (7)
6. Solve the system J(k)c(k+1) = b(k) for c(k+1)
7. Compute A(c(k+1)) in accordance with (1)
8. Compute W(k+1) in accordance with (5)
9. Compute H(k+1), L(k+1) in accordance with (8-10)
10. Compute U(k+1), V(k+1) in accordance with (11-12)
11. End For

3 Parallel MIII Method
The parallelization of the MIII has been carried out
using the SPMD paradigm on a message passing
environment [15]. If P processors are available, each
one will perform the same set of instructions.
Matrices and vectors are distributed among the
processors using the standard ScaLAPACK
distribution [3], that is, matrices and vectors are
block-partitioned, and these blocks are distributed
cyclically in a two-dimensional mesh of the P=Pr×Pc
processors (Pr rows and Pc columns). For example,
for the case Pr=2, Pc=2, a vector b (of size 8×1) and a
matrix A (of size 8×8), would be distributed as in
Figure 1.

Figure 1. Block cyclic distribution of a vector and a

matrix in a mesh of processors
 b A
 0 0 1 0 1

b1 a11 a12 a13 a14 a15 a16 a17 a18 0 b2 0 a21 a22 a23 a24 a25 a26 a27 a28
b3 a31 a32 a33 a34 a35 a36 a37 a38 1 b4 1 a41 a42 a43 a44 a45 a46 a47 a48
b5 a51 a52 a53 a54 a55 a56 a57 a58 0 b6 0 a61 a62 a63 a64 a65 a66 a67 a68
b7 a71 a72 a73 a74 a75 a76 a77 a78 1 b8 1 a81 a82 a83 a84 a85 a86 a87 a88

 Some operations in MIII can be parallelized
directly using distributed linear algebra routines of
libraries such as ScaLAPACK and PBLAS [5], others
can be parallelized designing specific routines based
on calls to ScaLAPACK/PBLAS routines and on
calls to other non distributed libraries, as
LAPACK/BLAS [1,14]. The message passing is
made with communication routines of BLACS [8]
and MPI [13].
 To minimize the communications between
processors, vectors S* and c are replicated in all the
processors.

 Steps 1 and 7 of the algorithm SMIII can be
perfectly parallelized, since c is replicated in all the
processors, and each processor computes (1) with the
blocks of the matrices Ai (i=0:n) which has locally
stored. Each processor performs this step locally with
the BLAS routine daxpy. The step 2 is parallelized
through the routine pdgesvd of ScaLAPACK.
 The matrix J can be computed in parallel (see (6)),
with a single matrix-matrix product AjV with the
routine pdgemm of PBLAS. The obtained matrix is
multiplied column by column with U, using the
distributed dot product (pddot of PBLAS) and the
result is stored in the appropriate component of J
(with the pdelset routine of ScaLAPACK). With this
procedure the step 4 is parallelized. The computation
of the vector b (step 5 of SMIII) is analogous to the
computation of the matrix J because it consists of the
same kind of operations (see (7)).
 The step 6 of SMIII is parallelized through a call
to the ScaLAPACK routine pdgesv, which solves a
linear system of equations. This last routine leaves
the c vector distributed among the processors. The
algorithm has been designed assuming that the vector
c is replicated in all the processors, therefore, this
vector must be broadcasted to all the processors.
 Since W and Wt are needed to compute H and L
(see (8-10)), step 8 in SMIII is parallelized with two
distributed matrix-matrix products pdgemm (to obtain
W) and a redistribution of W (to obtain Wt). This
redistribution is quite costly in terms of
communications, but it is essential to compute H and
L.
 The step 9 of SMIII can be parallelized without
communications, since the computations to be
performed are made component by component, and
all processors have all the data needed (S*) in its
local memory.
 Finally, the parallelization of the step 10 is made
through the PBLAS routine to multiply distributed
matrices (pdgemm) and through the routine to scale
vectors (dscal of BLAS). The ScaLAPACK routine
pdgesv is needed as well to solve the multiple right
hand sides linear systems (11,12). All together, the
parallel algorithm for method MIII is as follows
(pdlange is a ScaLAPACK routine which computes
the Frobenius norm of a distributed matrix):

Parallel MIII Algorithm (PMIII)
In Parallel For Proc = 0,1,…,P-1
1. Compute A(c(0)) in parallel

using daxpy of BLAS
2. Compute svd(A(c(0))) = U(0)S(0)V(0)t in parallel
 using pdgesvd of ScaLAPACK
3. For k = 0,1,…, while pdlange(U(k)A(k)V(k) – S*) > tol
4. Compute J(k) in parallel

Proceedings of the 8th WSEAS International Conference on APPLIED MATHEMATICS, Tenerife, Spain, December 16-18, 2005 (pp43-48)

 using pdgemm, pddot of PBLAS and
pdelset of ScaLAPACK

5. Compute b(k) in parallel
using pdgemm, pddot of PBLAS and

pdelset of ScaLAPACK
6. Solve J(k)c(k+1) = b(k) for c(k+1) in parallel

using pdgesv of ScaLAPACK
6. Reduction of c(k+1) to construct it in processor 0
 using pdgemr2d of BLACS
7. Broadcast of c(k+1) to all processors
 using dgebs2d and dgebr2d of BLACS

8. Compute A(c(k+1)) in parallel
using daxpy of BLAS

9. Compute W(k+1) and W(k+1)t in parallel
using pdgemm and pdcopy of PBLAS

10. Compute H(k+1) and L(k+1) in parallel
using daxpy of BLAS

11. Compute of U(k+1), V(k+1) in parallel
 using pdgemm of PBLAS, dscal of BLAS
 and pdgesv of ScaLAPACK
End Parallel For

4 Performance of Parallel MIII
Some numerical experiences have been carried out to
analyse the performance of SMIII and PMIII
algorithms. We present results about execution time,
speedup, efficiency and scalability of PMIII by
comparing it with its sequential version SMIII. As
target matrices we have chosen random matrices of
sizes m=n={1000,2000,3000}. The singular values to
be assigned have been chosen randomly too.
 SMIII and PMIII have been tested in a cluster of
2GHz biprocessor Intel Xeon, composed of 20 nodes,
each one with 1 Gbyte of RAM, disposed in a 4x5
mesh with 2D torus topology and interconnected
through a SCI network.
 Tests with a specific version of MPI for this
platform (Scali MPI) showed a latency of 5 µs and a
bandwidth of 166 Mbytes/s. All the algorithms were
implemented in Fortran 90. Several mathematical
libraries were used. First, ScaLAPACK and BLACS
parallel libraries were used to distribute the data and
to carry out some operations such matrix-matrix
products, solving linear systems of equations or
computing svd in parallel. Optimized versions of the
sequential BLAS and LAPACK libraries were used to
perform basic local operations on each processor.

4.1 Execution times
The theoretical execution times of SMIII and PMIII,
when m=n, can be approximated, respectively, by the
expressions:

ftknOknnknT
⎭
⎬
⎫

⎩
⎨
⎧

++=)(2
3

53),(34
3

and

+
⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++= ft

P
knO

P
kn

P
nPknT

343 2
3

53),,(

() +
⎭
⎬
⎫

⎩
⎨
⎧

+++ vtknPO
P

knP
P

nP 2
32)log()log(14

() (){ } mtnPOknPnP +++ 2log2 .
 Here, k is the number of iterations, tf is the
execution time for a single floating point operation, tm
is the network latency and tv is the inverse of the
bandwidth.
 These expressions show the high computational
cost of the algorithms and the good benefit obtained
with the parallelization.
 We have estimated the parameters tf, tm and tv,
corresponding to our target cluster and we have
compared the experimental results with those
predicted by the theoretical model for the case
m=n=3000. As it is shown in Figure 2, theoretical
results are a good approximation for the experimental
ones. Thus, we have a good tool to analyse the
behaviour of the algorithms in hypothetical situations.

Figure 2. Experimental v.s. Theoretical Runtime
(seconds) of MIII for m=n=3000

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

8

9
x 10

4

Number of Processors (P)

E
xe

cu
tio

n
tim

es
 o

f
M

II
I

(s
ec

on
ds

)

Experimental
Theoretical

 As the parallelization of MIII algorithm has been
carried out at iteration level, we show in the sequel
experimental results for one iteration only. In Table 1
we present the execution time of one iteration of the
algorithm for several sizes and different number of
processors. It can be seen the large complexity of the
problem (O(n4) per iteration) and how the runtime
decreases as the number of processors increases.

Proceedings of the 8th WSEAS International Conference on APPLIED MATHEMATICS, Tenerife, Spain, December 16-18, 2005 (pp43-48)

Table 1. Runtime (seconds) of MIII
P 1000 2000 3000
1 1181 17124 86131
2 692 9407 43306
4 402 4973 22160
6 351 3586 15813
8 265 2909 12774
9 237 2493 10792
10 265 2747 11059
12 200 2111 8745
14 233 2108 8790
16 169 1686 6882

4.2 Speedup and Efficiency
From the theoretical point of view PMIII is an
asymptotically optimum parallel algorithm:

P
kPmT

kmTPmS
mm

==
∞→∞→),,(

),(lim),(lim .

Figure 3. Experimental Speedup of MIII

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

Number of Processors (P)

Sp
ee

dU
p

of
 M

II
I

m = 1000
m = 2000
m = 3000

Table 2. Experimental Efficiency of MIII
P 1000 2000 3000
1 100 % 100 % 100 %
2 85 % 91 % 99 %
4 73 % 86 % 97 %
6 56 % 79 % 90 %
8 55 % 73 % 84 %
9 55 % 76 % 88 %
10 44 % 62 % 77 %
12 49 % 67 % 82 %
14 36 % 58 % 69 %
16 43 % 63 % 78 %

 In Figure 3 and Table 2 the experimental speedup
and efficiency are shown for different sizes and
number of processors. It can be verified the good
behaviour of the algorithm specially for large size

problems. Thus, for m=n=3000 efficiency is always
above 69%.

4.3 Scalability
We use the scalability approach provided by [15].
The scalability of a parallel system is a measure of
its capacity to increase speedup in proportion to the
number of processing elements. It reflects a parallel
systems ability to utilize increasing processing
resources effectively [15]. Different metrics for
evaluating the scalability can be found in the
specialized literature; however it is convenient to
have in mind the characteristics of the problem in
order to chose the adequate metric of scalability
[16]. In our case we use the scaled speedup as
defined in [15] due to its ease of use when
experimental data are available. The scaled speedup
is defined as the speedup obtained when the problem
size is increased linearly with the number of
processing elements. A system is considered
scalable if the scaled-speedup is close to linear with
respect to the number of processing elements.
 To analyze the scalability the problem size must
be scaled with the number of processors. We define
the problem size as the number of computations
carried out in the best sequential algorithm. In this
case we consider that the theoretical computational
cost of the sequential algorithm is W=O(n4). Thus,
scaling the number of processors P and the problem
size in the same ratio implies that if we scale P as
P=kP0 then W must be scaled as kO(n4) and n must
be scaled as k1/4n0. In the practical experiments we
have taken the Speedup with m=n={1000, 1190,
1410, 1560, 1680, 1732, 1861, 2000} in
correspondence with P={1, 2, 4, 6, 8, 9, 12, 16}.
This is plotted in Figure 4 and it shows a quite good
behaviour of the scalability of the parallel algorithm.

Figure 4. Experimental Scaled Speedup of MIII

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

8

9

10

11

Number of Processors (P)

Sc
al

ed
 S

pe
ed

up
 o

f
M

II
I

m=1190

m=1000

m=1410

m=1560

m=1680

m=1730

m=1860

m=2000

Proceedings of the 8th WSEAS International Conference on APPLIED MATHEMATICS, Tenerife, Spain, December 16-18, 2005 (pp43-48)

5 Conclusions
We have designed a parallel algorithm (PMIII) that
solves the IASVP efficiently. Some operations of
SMIII algorithm have been parallelized directly
using portable and efficient distributed linear algebra
routines of parallel libraries (PBLAS, ScaLAPACK),
supported by linear algebra routines of sequential
libraries (BLAS, LAPACK). Others SMIII operations
have been parallelized designing specific routines
based on calls to ScaLAPACK, PBLAS, LAPACK,
BLAS, BLACS and MPI routines. The
communications among processors have been
carefully minimized.
 We have estimated the theoretical execution times
of SMIII and PMIII. They indicate that the execution
time of PMIII is smaller than that corresponding to
SMIII and it has good performance asymptotically.
We have verified these facts experimentally.
 We have experimented with different sizes of
problems (1000≤m,n≤ 3000), greater than those
reported on the previous literature. The experiments
have been executed in a cluster and we have obtained
execution times that improve the sequential execution
times substantially. Speedups and efficiency are quite
good for small number of processors (2 and 4), and
remain acceptable when the number of processors
grows as long as the problem size is large enough.
Accordingly, the scalability observed is fairly good.

Acknowledgement
This work has been supported by Spanish MCYT and
FEDER under Grant TIC2003-08238-C02-02 and
SEIT, SUPERA-ANUIES (México).

References:
[1] Anderson, E., Bai, Z., Bishof, C., Demmel, J. and

Dongarra, J., LAPACK User Guide, SIAM, 1995.
[2] Bai, Z., Morini, B. and Xu, S., On the local

convergence of an Iterative Approach for Inverse
Singular Value Problem, Journal of
Computational and Applied Mathematics, 2005.

[3] Blackford, L., Choi, J. and Clearly, A.,
ScaLAPACK User’s Guide, SIAM, 1997.

[4] Chen, X. and Chu, T., On the Least Squares
Solution of Inverse Eigenvalue Problems, SIAM,
Journal on Numerical Analysis, Vol. 33, No. 6,
1996, pp 2417-2430.

[5] Choi, J., Dongarra, J., Ostrouchov, S., Pettitet, A.
and Walker, D., A Proposal for a Set of Parallel
Basic Linear Algebra Subprograms, Technical
report ut-cs-95-292, Department of Computer
Science, University of Tenessee, 1995.

 [6] Chu, M., Inverse Eigenvalue Problems, SIAM,
Review, Vol. 40, 1998.

 [7] Chu M., Numerical Methods for Inverse Singular
Value Problems. SIAM, Journal Numerical
Analysis, Vol. 29, 1992, pp 885-903.

 [8] Dongarra, J. and Van de Geijn, A., Two
Dimensional Basic Linear Algebra Comunications
Subprograms, Technical report st-cs-91-138,
Department of Computer Science, University of
Tenessee, 1991.

[9] Flores-Becerra, G., García, V.M. and Vidal, A.M.,
Numerical Experiments on the Solution of the
Inverse Additive Singular Value Problem. Lecture
Notes in Computer Science, Vol. 3514, 2005, pp
17-24.

[10] Flores, G. and Vidal, A.M., Parallel Global and
Local Convergent Algorithms for Solving the
Inverse Additive Singular Value Problem. Wseas,
Transaction on Circuits and Systems, Vol. 3,
2004, pp 2241-2246.

[11] Friedland, S., Nocedal, J. and Overton, M. L.,
The Formulation and Analysis of Numerical
Methods for Inverse Eigenvalue Problems, SIAM,
Journal on Numerical Analysis, Vol. 24, No. 3,
1987, pp 634-667.

[12] Groetsch, C., Inverse Problems. Activities for
Undergraduates, The mathematical association of
America, 1999.

[13] Groupp, W., Lusk, E. and Skjellum, A., Using
MPI: Portable Parallel Programming with
Message Passing Interface. MIT Press, 1994.

[14] Hammarling, S., Dongarra, J., Du Croz, J,. and
Hanson, R., An Extended Set of Fortran Basic
Linear Algebra Subroutines, ACM Trans.
Methemathical Software, 1988.

[15] Grama, A., Gupta, A., Karypis, G. and Kumar,
V., Introduction to Parallel Computing, 2nd
edition. Pearson Education Limited, 2003.

[16] Martin, I. and Tirado, F., Relationships between
efficiency and execution time of full multigrid
methods on parallel computers. IEEE
Transactions on Parallel and Distributed
Systems, Vol. 8, No. 6, June 1997.

Proceedings of the 8th WSEAS International Conference on APPLIED MATHEMATICS, Tenerife, Spain, December 16-18, 2005 (pp43-48)

