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Abstract: - This paper describes the parallelization of a method (proposed by Chu in [7]) to solve the Inverse 
Additive Singular Value Problem (IASVP). The IASVP is a problem whose solution requires a high 
computational cost, both in time and in memory. For example, the complexity of Chu’s method is O(n4) in time 
and O(n3) in memory. Using parallel computing, the time needed to solve the problem has been substantially 
reduced. The parallel algorithm developed has shown good experimental performance, confirming the theoretical 
performance predicted and showing an acceptable scalability. 
 
Key-Words: - Inverse Singular Value Problems, Parallel Algorithms, Newton-type methods  
 
1   Introduction 
The Inverse Eigenvalue Problem (IEP) and the 
Inverse Singular Value Problem (ISVP) appear in 
many science and engineering problems, such as 
medical tomography, image processing, circuit design 
or curve fit [6,11,12]. Both problems have as goal the 
reconstruction of a matrix with given structure and 
with pre-established eigenvalues or singular values. A 
particular case of the ISVP is the Inverse Additive 
Singular Value Problem, defined by Chu as [7]: 
     Given n+1 real m×n matrices A0, A1, ..., An (m≥n) 
and a set of real numbers σ*={S*1,S*2,...,S*n}, where 
S*1≥S*2≥...≥S*n, find a real vector c=[c1,c2,...,cn]t, 
such that σ* are the singular values of 
                      A(c) = A0  + c1A1 + ... + cnAn               (1) 
     The IASVP can be stated as a system of nonlinear 
equations which can be solved with iterative Newton-
like methods. This was done in [10], adapting the so-
called Method I proposed by Friedland et al., to solve 
the IEP [11]. The IASVP can be formulated as well 
as a minimum square problems; a technique solution 
can be found in [10]. This solution is based on the 
Lift&Project method, proposed by Chen et al. in [4] 
to solve the IEP.  
     A different type of method for the solution of the 
IASVP was developed by Chu in [7]; we denote this 
method as MIII in this paper. MIII generalizes an 
iterative process described first by Friedland et al., in 
[11] to solve the ISVP. This is an iterative Newton-

like method, of fast convergence [2] and high 
accuracy. However, as with most Newton-like 
algorithms, its convergence relies heavily on the 
quality of the initial approximation.  
     MIII has been experimentally tested in [2,7] for 
problems of size m=5, n=4 and in [9] for problems of 
sizes 5≤m=n≤ 50, using sequential algorithms. 
Experimental tests with larger sizes (for example 
O(102,103)) would have very long execution times, 
since MIII has high complexity in time (O(n4)) and in 
space (O(n3)). 
     The goal of this paper is the design of a parallel 
version of the MIII method, so that larger problems 
can be solved. This parallel algorithm complete a set 
of parallel algorithms based on Newton-type methods 
to solve the IASVP [9,10]. The main idea is to 
incorporate the parallel MIII algorithm to a 
specialized library for the resolution of the IEP and 
the ISVP. This library is currently in the design and 
development stages.  
      The MIII method shall be briefly described in 
Section 2. In Section 3 we will describe the parallel 
SPMD algorithm; it has been implemented on a 
distributed memory architecture. In Section 4 the 
theoretical performance of the algorithm is discussed, 
and some numerical results are presented. Finally, in 
Section 5 we give our conclusions. 
 
 

Proceedings of the 8th WSEAS International Conference on APPLIED MATHEMATICS, Tenerife, Spain, December 16-18, 2005 (pp43-48)



2   Method MIII 
The basic operation of the MIII method [7] consists 
of finding the intersection between the set G(σ*) of 
the matrices whose singular values are the set σ*, and 
the set L(c) of the matrices that can be written as in 
(1). G(σ*) and L(c) can be expressed as: 
     G(σ*) = {US*Vt | U∈ℜmxm,V∈ℜnxn,orthogonal} 
     L(c)  = {A(c) | c∈ℜn}, 
where S* = diag(S*1, S*2,...,S*n). 
     MIII finds an approximation to the intersection of 
G(σ*) and L(c) through an iterative method with two 
distinct stages in each iteration. 
     Thus, in the iteration k, given the matrix 
X(k)∈G(σ*), the first stage is to find a line that is 
tangent to the manifold G(σ*) at X(k)  and which 
intersects with L(c) at A(c(k+1)).         
     As X(k)∈G(σ*), there exist orthogonal matrices 
U(k) and V(k) such that  
                              X(k) = U(k)S*V(k)t.                          (2) 
     Furthermore, as proved in [7], the vector tangent 
to G(σ*) which starts in the point X(k) and reaches the 
set L(c) at the point A(c(k+1)) can be expressed as: 
                     X(k)  + X(k)Λ(k) - ϑ(k)X(k)  = A(c(k+1)),        (3) 
where Λ(k) and ϑ(k) are skewsymmetric matrices 
which, along with c(k+1), are the unknowns of equation 
(3). Using (2), (3) can be written as: 
                        S* + S*L(k)  - H(k)S* = W(k),               (4) 
where:  

         L(k)  = V(k)tΛ(k)V(k),  H(k)  = U(k)tϑ(k)U(k)  and 
                          W(k) =U(k)tA(c(k+1))V(k).                     (5) 
     By equating the diagonal elements in (4) the 
following linear system is obtained [7]: 
                                   J(k) c(k+1) = b(k)                          
where: 
                             J(k)  = [ui

(k)tAj vi
(k) ]i,,j=1,n                 (6) 

                         b(k)  = S* - [ui
(k)tA0 vi

(k) ]i=1,n               (7) 
Once this is solved, c(k+1), A(c(k+1)) and W(k) are 
obtained. So, one of the unknowns in (4) is 
computed, ending the first stage. 
     If the off-diagonal elements in (4) are equated, the 
unknowns H(k)  and L(k) can be computed as follows 
(see [7] for the details): 
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     The goal of the second stage in the iteration k is to 
find a matrix X(k+1) in G(σ*) which approximates 
A(c(k+1)): 

X(k+1)≈A(c(k+1)). 
     Matrix X(k+1) could be obtained from matrix X(k) by 
expressing U(k+1) and V(k+1) in the way  

U(k+1) =eH(k)U(k)   
and    

V(k+1) =eL(k)V(k), 
(see [7] for details). 
     Since eH(k) and eL(k)  can be approximated as  
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then an estimation of matrix X(k+1)=U(k+1)S*V(k+1)t can 
be obtained from the matrices  

U(k+1) = R(k)TU(k)t 

and 
V(k+1) = T(k)TV(k). 

     Expression (3) guarantees that: 
X(k+1) ≈  R(k)t(eH(k)A(k+1)e-L(k)) T(k), 

(see [7] for details). 
     Therefore, to compute X(k+1) the following systems 
of equations (with multiple right hand sides): 
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must be solved to obtain U(k+1) and V(k+1). This 
completes a single iteration of the method MIII. 
     In [2] it was shown that MIII converges 
quadratically to the solution of the IASVP, denoted as 
c*. The full MIII algorithm is: 
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Sequential MIII Algorithm (SMIII) 
1.  Compute A(c(0)) in accordance with (1) 
2.  Compute svd(A(c(0))) = U(0)S(0)V(0)t  
3.  For k = 0,1,…, while ||U(k)tA(k)V(k) – S*||F > tol 
4.     Compute J(k) in accordance with (6) 
5.     Compute b(k) in accordance with (7) 
6.     Solve the system J(k)c(k+1) = b(k) for c(k+1) 
7.     Compute A(c(k+1)) in accordance with (1) 
8.     Compute W(k+1) in accordance with (5) 
9.     Compute H(k+1), L(k+1) in accordance with (8-10) 
10.   Compute U(k+1), V(k+1) in accordance with (11-12) 
11. End For 
 
 
3   Parallel MIII Method 
The parallelization of the MIII has been carried out 
using the SPMD paradigm on a message passing 
environment [15]. If P processors are available, each 
one will perform the same set of instructions. 
Matrices and vectors are distributed among the 
processors using the standard ScaLAPACK 
distribution [3], that is, matrices and vectors are 
block-partitioned, and these blocks are distributed 
cyclically in a two-dimensional mesh of the P=Pr×Pc 
processors (Pr rows and Pc columns). For example, 
for the case Pr=2, Pc=2, a vector b (of size 8×1) and a 
matrix A (of size 8×8), would be distributed as in 
Figure 1. 
 
Figure 1. Block cyclic distribution of a vector and a 

matrix in a mesh of processors 
       b                                  A 
 0       0     1     0     1 

b1  a11 a12 a13 a14 a15 a16 a17 a18 0 b2  0 a21 a22 a23 a24 a25 a26 a27 a28 
b3  a31 a32 a33 a34 a35 a36 a37 a38 1 b4  1 a41 a42 a43 a44 a45 a46 a47 a48 
b5  a51 a52 a53 a54 a55 a56 a57 a58 0 b6  0 a61 a62 a63 a64 a65 a66 a67 a68 
b7  a71 a72 a73 a74 a75 a76 a77 a78 1 b8  1 a81 a82 a83 a84 a85 a86 a87 a88 

 
     Some operations in MIII can be parallelized 
directly using distributed linear algebra routines of 
libraries such as ScaLAPACK and PBLAS [5], others 
can be parallelized designing specific routines based 
on calls to ScaLAPACK/PBLAS routines and on 
calls to other non distributed libraries, as 
LAPACK/BLAS [1,14]. The message passing is 
made with communication routines of BLACS [8] 
and MPI [13]. 
     To minimize the communications between 
processors, vectors S* and c are replicated in all the 
processors.  

     Steps 1 and 7 of the algorithm SMIII can be 
perfectly parallelized, since c is replicated in all the 
processors, and each processor computes (1) with the 
blocks of the matrices Ai (i=0:n) which has locally 
stored. Each processor performs this step locally with 
the BLAS routine daxpy. The step 2 is parallelized 
through the routine pdgesvd of ScaLAPACK.  
     The matrix J can be computed in parallel (see (6)), 
with a single matrix-matrix product AjV with the 
routine pdgemm of PBLAS. The obtained matrix is 
multiplied column by column with U, using the 
distributed dot product (pddot of PBLAS) and the 
result is stored in the appropriate component of J 
(with the pdelset routine of ScaLAPACK). With this 
procedure the step 4 is parallelized. The computation 
of the vector b (step 5 of SMIII) is analogous to the 
computation of the matrix J because it consists of the 
same kind of operations (see (7)).  
     The step 6 of SMIII is parallelized through a call 
to the ScaLAPACK routine pdgesv, which solves a 
linear system of equations. This last routine leaves 
the c vector distributed among the processors. The 
algorithm has been designed assuming that the vector 
c is replicated in all the processors, therefore, this 
vector must be broadcasted to all the processors.  
     Since W and Wt are needed to compute H and L 
(see (8-10)), step 8 in SMIII is parallelized with two 
distributed matrix-matrix products pdgemm (to obtain 
W) and a redistribution of W (to obtain Wt). This 
redistribution is quite costly in terms of 
communications, but it is essential to compute H and 
L. 
    The step 9 of SMIII can be parallelized without 
communications, since the computations to be 
performed are made component by component, and 
all processors have all the data needed (S*) in its 
local memory. 
     Finally, the parallelization of the step 10 is made 
through the PBLAS routine to multiply distributed 
matrices (pdgemm) and through the routine to scale 
vectors (dscal of BLAS). The ScaLAPACK routine 
pdgesv  is needed as well to solve the multiple right 
hand sides linear systems (11,12). All together, the 
parallel algorithm for method MIII is as follows 
(pdlange is a ScaLAPACK routine which computes 
the Frobenius norm of a distributed matrix): 
 
Parallel MIII Algorithm (PMIII) 
In Parallel For Proc = 0,1,…,P-1 
1. Compute A(c(0)) in parallel  

using daxpy of BLAS 
2. Compute svd(A(c(0))) = U(0)S(0)V(0)t in parallel 
  using pdgesvd of ScaLAPACK 
3. For k = 0,1,…, while pdlange(U(k)A(k)V(k) – S*) > tol 
4.   Compute J(k) in parallel 
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  using pdgemm, pddot of PBLAS and  
pdelset of ScaLAPACK 

5.   Compute b(k) in parallel 
using pdgemm, pddot of PBLAS and 

pdelset of ScaLAPACK 
6.   Solve J(k)c(k+1) = b(k) for c(k+1) in parallel 

using pdgesv of ScaLAPACK 
6.   Reduction of c(k+1)  to construct it in processor 0 
  using pdgemr2d of BLACS 
7.   Broadcast of c(k+1) to all processors 
  using dgebs2d and dgebr2d of BLACS 

8.   Compute A(c(k+1)) in parallel 
using daxpy of BLAS 

9.   Compute W(k+1) and W(k+1)t in parallel 
using pdgemm and pdcopy of PBLAS 

10.  Compute H(k+1) and L(k+1) in parallel 
using daxpy of BLAS 

11.  Compute of U(k+1), V(k+1) in parallel 
  using pdgemm of PBLAS, dscal of BLAS  
   and pdgesv of ScaLAPACK 
End Parallel For 

 
 

4   Performance of Parallel MIII 
Some numerical experiences have been carried out to 
analyse the performance of SMIII and PMIII 
algorithms. We present results about execution time, 
speedup, efficiency and scalability of PMIII by 
comparing it with its sequential version SMIII. As 
target matrices we have chosen random matrices of 
sizes m=n={1000,2000,3000}. The singular values to 
be assigned have been chosen randomly too. 
     SMIII and PMIII have been tested in a cluster of 
2GHz biprocessor Intel Xeon, composed of 20 nodes, 
each one with 1 Gbyte of RAM, disposed in a 4x5 
mesh with 2D torus topology and interconnected 
through a SCI network. 
     Tests with a specific version of MPI for this 
platform (Scali MPI) showed a latency of 5 µs and a 
bandwidth of 166 Mbytes/s. All the algorithms were 
implemented in Fortran 90. Several mathematical 
libraries were used. First, ScaLAPACK and BLACS 
parallel libraries were used to distribute the data and 
to carry out some operations such matrix-matrix 
products, solving linear systems of equations or 
computing svd in parallel. Optimized versions of the 
sequential BLAS and LAPACK libraries were used to 
perform basic local operations on each processor. 
 
4.1 Execution times  
The theoretical execution times of SMIII and PMIII, 
when m=n, can be approximated, respectively, by the 
expressions: 
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    Here, k is the number of iterations, tf is the 
execution time for a single floating point operation, tm 
is the network latency and tv is the inverse of the 
bandwidth.  
    These expressions show the high computational 
cost of the algorithms and the good benefit obtained 
with the parallelization. 
    We have estimated the parameters tf, tm and tv, 
corresponding to our target cluster and we have 
compared the experimental results with those 
predicted by the theoretical model for the case 
m=n=3000. As it is shown in Figure 2, theoretical 
results are a good approximation for the experimental 
ones. Thus, we have a good tool to analyse the 
behaviour of the algorithms in hypothetical situations. 
 

Figure 2. Experimental v.s. Theoretical Runtime 
(seconds) of  MIII for m=n=3000 
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     As the parallelization of MIII algorithm has been 
carried out at iteration level, we show in the sequel 
experimental results for one iteration only. In Table 1 
we present the execution time of one iteration of the 
algorithm for several sizes and different number of 
processors. It can be seen the large complexity of the 
problem (O(n4) per iteration) and how the runtime 
decreases as the number of processors increases. 
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Table 1. Runtime (seconds) of MIII 
P 1000 2000 3000 
1 1181 17124 86131 
2 692 9407 43306 
4 402 4973 22160 
6 351 3586 15813 
8 265 2909 12774 
9 237 2493 10792 
10 265 2747 11059 
12 200 2111 8745 
14 233 2108 8790 
16 169 1686 6882 

 
 

4.2 Speedup and Efficiency 
From the theoretical point of view PMIII is an 
asymptotically optimum parallel algorithm: 
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Figure 3. Experimental Speedup of MIII 
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Table 2. Experimental Efficiency of MIII 
P 1000 2000 3000 
1 100 % 100 % 100 % 
2 85 % 91 % 99 % 
4 73 % 86 % 97 % 
6 56 % 79 % 90 % 
8 55 % 73 % 84 % 
9 55 % 76 % 88 % 
10 44 % 62 % 77 % 
12 49 % 67 % 82 % 
14 36 % 58 % 69 % 
16 43 % 63 % 78 % 

 
    In Figure 3 and Table 2 the experimental speedup 
and efficiency are shown for different sizes and 
number of processors. It can be verified the good 
behaviour of the algorithm specially for large size 

problems. Thus, for m=n=3000 efficiency is always 
above 69%. 
 
4.3 Scalability 
We use the scalability approach provided by [15]. 
The scalability of a parallel system is a measure of 
its capacity to increase speedup in proportion to the 
number of processing elements. It reflects a parallel 
systems ability to utilize increasing processing 
resources effectively [15]. Different metrics for 
evaluating the scalability can be found in the 
specialized literature; however it is convenient to 
have in mind the characteristics of the problem in 
order to chose the adequate metric of scalability 
[16]. In our case we use the scaled speedup as 
defined in [15] due to its ease of use when 
experimental data are available. The scaled speedup 
is defined as the speedup obtained when the problem 
size is increased linearly with the number of 
processing elements. A system is considered 
scalable if the scaled-speedup is close to linear with 
respect to the number of processing elements. 
     To analyze the scalability the problem size must 
be scaled with the number of processors. We define 
the problem size as the number of computations 
carried out in the best sequential algorithm. In this 
case we consider that the theoretical computational 
cost of the sequential algorithm is W=O(n4). Thus, 
scaling the number of processors P and the problem 
size in the same ratio implies that if we scale P as 
P=kP0 then W must be scaled as kO(n4) and n must 
be scaled as k1/4n0. In the practical experiments we 
have taken the Speedup with m=n={1000, 1190, 
1410, 1560, 1680, 1732, 1861, 2000} in 
correspondence with P={1, 2, 4, 6, 8, 9, 12, 16}. 
This is plotted in Figure 4 and it shows a quite good 
behaviour of the scalability of the parallel algorithm.  
 

Figure 4. Experimental Scaled Speedup of MIII 
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5   Conclusions 
We have designed a parallel algorithm (PMIII) that 
solves the IASVP efficiently. Some operations of 
SMIII algorithm  have been parallelized directly 
using portable and efficient distributed linear algebra 
routines of parallel libraries (PBLAS, ScaLAPACK), 
supported by linear algebra routines of sequential 
libraries (BLAS, LAPACK). Others SMIII operations 
have been parallelized designing specific routines 
based on calls to ScaLAPACK, PBLAS, LAPACK, 
BLAS, BLACS and MPI routines. The 
communications among processors have been 
carefully minimized. 
     We have estimated the theoretical execution times 
of SMIII and PMIII. They indicate that the execution 
time of PMIII is smaller than that corresponding to 
SMIII and it has good performance asymptotically. 
We have verified these facts experimentally. 
     We have experimented with different sizes of 
problems (1000≤m,n≤ 3000 ), greater than those 
reported on the previous literature. The experiments 
have been executed in a cluster and we have obtained 
execution times that improve the sequential execution 
times substantially. Speedups and efficiency are quite 
good for small number of processors (2 and 4), and 
remain acceptable when the number of processors 
grows as long as the problem size is large enough. 
Accordingly, the scalability observed is fairly good. 
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