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Abstract: - This paper is Part I of a two-part article. The control design of synchronous motors is now classical, so it is 
helpful to present graphical tools of control design such as the Causal Ordering Graph (COG). In Part I, we present 
classical models of permanent magnet synchronous motors using the COG. These models are developed and analysed in 
the stationary reference frame, in Concordia’s reference frame and in Park’s reference frame. The Causal Ordering Graph 
representation of models reveals the nature of the interactions between currents and fluxes. Also, the torque expression of 
synchronous motors is presented as a non-bijective relation. In order to establish nonspecific models, an analogy between 
rotary and linear synchronous motor is presented. Afterwards, the specificities of linear motors are exposed. This 
property of models will be taken into account to generate controllers using the inversion principle of COG in Part II. 
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1   Introduction 
The purpose of this paper is to establish generic models of 
synchronous motors using the Causal Ordering Graph 
(COG) in order to establish the optimal control structures 
of such systems. Nowadays, numerous modelling 
techniques are available: Finite elements models, 
self-tuning parameters models, state space formalism, etc 
[1]. Nevertheless, some of these models cannot be used 
directly inside control structures, because of: buffer size 
limitation, maximum value of CPU turnaround time, and 
so on [2]. In this paper, we apply the COG formalism to a 
synchronous motor because it takes into account the 
causal behaviour of physical phenomena. In fact, the 
COG is a descriptive method, which helps to discern the 
causality of a system [3]. This property becomes truly 
important to elaborate control strategies for maintaining 
the torque control. 
     After explaining the principle of the Causal Ordering 
Graph, we apply this methodology to simplified models 
of synchronous motors in (α-β) Concordia’s reference 
frame and in (d-q) Park’s reference frame. The (abc) 
stationary reference frame gives a so-called natural 
model, whereas (α-β) Concordia’s transformation gives a 
so-called generalised model. (d-q) Park’s reference 
frame, known as the synchronous reference frame, gives 
constant values of corresponding currents and fluxes in 
the direct axis and quadrature axis only. Furthermore, as 
we develop a generic model, an analogy between rotary 
and linear synchronous motors is made. The specificities 
of linear motors are exposed in order to obtain more 
accurate models. 
 

     In Part II, the inversion principle of the COG is applied 
so as to build an optimal control structure. Thus, 
examples of vector control strategies in Concordia’s 
reference frame and in Park’s reference frame are given; 
they are validated with experimental results on a linear 
synchronous motor. 
 
 
2   The Causal Ordering Graph: Model 
2.1 The COG specificities 
System modelling aiming to design optimal controllers is 
a classical engineering approach. But only systematic 
methods guarantee the successful study of the complex 
system analysis. The Causal Ordering Graph is a 
systematic method based on a located energy 
representation with the theory of causal ordering [3-6]. 
     It is undeniable that this approach is connected with 
that of links graphs such as the Bond Graphs [7-11]. But it 
differs from them by the analysis process, which is based 
on integral causality only. The COG is a tool that 
structures the synthesis of a state model, but that aims at 
maintaining, for a given system, a representation as close 
as possible to that felt in the observation. Obviously, the 
resulting model will be affected by the neglected elements 
as well as the explicit and implicit assumptions induced 
by the physical interpretation of the constitutive objects. 
Lastly, the fundamental objective of the COG tool is to 
propose, by a graphical method and thanks to some 
simple principles, a synthesis of the control law taking 
into account the physical transfers of the process.  
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2.2 The Causal Ordering Graph principle 
The Causal Ordering Graph is built up with several 
graphical processors attached to different objects located 
in the studied process. The evolution of these objects is 
characterized by a transformation relation between 
influencing quantities and influenced quantities. This 
relation is induced by the principle of causality governing 
the energetic relation of an object or group of objects. In 
short, the output of a processor only depends on present or 
past values of the inputs. Such a formulation expresses 
the causality in integral form, and this concept is 
illustrated by many significant electrical and mechanical 
examples. Since the flux in a self is an integral function of 
the voltage, by analogy, the kinetic moment of a rigid 
mass is the integral function of the applied efforts. The 
electricity quantity in a capacitor is an integral function of 
the current; by analogy, the endpoints position of a spring 
is the integral of the velocity variation between the 
endpoints (Hooke’s law) [12]. 
     In general, the expression of the transformation 
relations by means of the state equations is the best 
warranty against physical misinterpretation. To simplify 
the presentation, we will only retain two complementary 
definitions of integral causality: (Fig.1.a) If an object 
accumulates information, causality is internal: the output 
is necessarily a function of the energy state. The relation, 
thus oriented, is known as causal. Time and the initial 
state are implicit inputs and are not represented (Fig.1.b). 
On the contrary, if an object does not accumulate 
information, causality is external. The output is an 
instantaneous function of the input. The relation, which is 
not oriented, is then known as rigid. Fig.1 gives the 
selected symbolism to differentiate between the two kinds 
of processors. 
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Fig.1: COG symbolisms:  

(a) causal relation, (b) rigid relation. 
 
 
3   Model of Synchronous Motors 
3.1 Assumptions and definitions 
To focus the work presented here, the following 
assumptions are made: 

1) Only three-phase motors are considered. 
2) Motors are star-connected with an inaccessible 

neutral wire. 
3) All three phases are balanced, so the electrical 

angle of each current is shifted by 2π/3 from that 
of each other. 

4) The same goes for non-sinusoidal back-EMF. 

5) Resistances and inductances of the three phases 
are identical and constant. 

6) The magnetic circuit is not saturated. 
7) Slot effects are taken into account as cogging 

force with its first harmonic value. 
8) Magnetomotive forces are considered to have a 

sinusoidal space repartition. 
 
     Depending on construction, materials and rotor 
design, we can classify the synchronous motors in four 
basic groups: reluctance motors, hysteresis motors, 
electromagnetically-excited motors, and permanent 
magnet (PM) motors [13-14]. At this point, the study is 
restricted to PM motors only. The polyphase synchronous 
motor considered has three pole pairs. The rotor is made 
of surface-deposed permanent magnets. Fig.2 gives a 
scheme of the permanent magnet synchronous motor 
(PMSM) studied.  

 
Fig.2: Schematic view of the studied PMSM 

 
     Consequently, we can apply additive properties on 
fluxes and currents. Then, axes are defined in the 
electrical frame, where e pNθ θ= ⋅ . 
     Three identical windings in the stator are separated 
from each other with an electrical angle of 2π / 3. The axis 
of phase a defines the (abc) stationary reference frame, 
Fig.2.  
     Moreover, the a axis also represents the direct axis α of 
Concordia’s reference frame. The quadrature axis β of 
Concordia’s reference frame is separated by a mechanical 
angle of π / 6 from its direct axis α. Concordia’s reference 
frame is a so-called diphase stationary reference frame. 
     Inside the rotor, the direct axis d of Park’s reference 
frame is defined in the middle of a north permanent 
magnet. Then, the quadrature axis q of Park’s reference 
frame is separated by a mechanical angle of π / 6 from its 
direct axis d (the same as an electrical angle of π / 2). 
Park’s reference frame is a so-called synchronous 
reference frame. 
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3.2 The abc stationary reference frame 
Equations of the electrical part of synchronous motors are 
depicted as follows: 

 [ ] [ ]
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0 0

abc abc
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R R L M L M

R M M L
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 em a a b b c cT v e i e i e i⋅ = ⋅ + ⋅ + ⋅  (3) 

     Fig.3 presents the Causal Ordering Graph of the 
electrical part in the stationary reference frame.  The COG 
relations of Fig.3 show that balanced conditions give a 
symmetrical graph, and explain that phases can be 
represented as a simplified vector scheme. 
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Fig.3: COG of the electrical part of a PMSM in (abc) 

 
     The different relations are given by: 

2 Labc abc abc RabcR V V e V→ = − −  
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dR e
d
φω
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     Because of the assumptions taken about the 
inductances and mutual inductances, the inductance 
voltage VL of the R3 processor corresponds to an 
equivalent voltage for the L-M inductance, which 
represents a part of the energy stored in the system. 
     The R1 processor represents a matrix transformation 
used to duplicate the effects of a non-distributed neutral 
wire, especially the elimination homopolar components 
and currents with harmonic ranks that are multiples of 
three. 
 
     Next, the mechanical model of the motor can be 
represented as: 
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Fig.4: COG of the mechanical part of a PMSM 

 
     The different relations are given by: 

8 mot em r f cogR T T T T T→ = − − −  

9 mot
dR J T
dt
ω→ ⋅ = , 11 dR

dt
θ ω⎛ ⎞→ =⎜ ⎟

⎝ ⎠
 

ˆ12 sin(6 )cog cog pR T T N θ→ = ⋅ ⋅  
 

     The R10 processor represents friction phenomena, 
which are non-linear. Depending on the control strategy, 
if speed control is needed at a high speed, viscous friction 
and Coulomb’s friction should be taken into account. 
Otherwise, if speed control is needed at a low speed, 
Stribeck’s phenomenon could be included, for example 
[15]. 
     The R12 processor represents the cogging forces 
induced by the interaction between the PMs mounted on 
the rotor and the stator anisotropy, due to the slotting. 
According to the stator design of Fig.2, the cogging forces 
frequency is six times that of the current frequency [16]. 
However, motors with closed slots or slotless stators are 
not affected by cogging torque. 
     As noticed in the COG relations of Fig.4, all the 
relations are independent of electrical reference frames. 
So, the mechanical model of a PMSM will be exactly the 
same in the next developments.  
 
3.3 The α-β diphase stationary reference frame 
Most of contemporary industrial applications with 
synchronous motors are made of three-phase windings, 
which are star-connected with an inaccessible neutral 
wire. This means that the homopolar component is 
eliminated. Furthermore, the three currents are linked. 
Consequently, only two supplied voltages are truly 
needed to control the PMSM. So, we apply (α-β) 
Concordia’s reference frame to (1-3) [17]. Concordia’s 
transformation is defined by: 
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 (4) 

     We can define a Causal Ordering Graph of the 
electrical part in the diphase stationary reference frame, 
Fig.5.  
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Fig.5: COG of the electrical part of a PMSM in (α-β) 

 
     The different relations are given by: 
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     The COG of the electrical part of a PMSM in Fig.5 is a 
simplified vector scheme. Indeed, we can notice that the 
diphase machine is equivalent to two elementary 
independent machines which are mechanically linked. 
Each one is defined by a flux axis in quadrature with a 
current axis: 
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2

em p f e eT N i iβ αφ θ θ⋅= ⋅ ⋅ − ⋅⎡ ⎤⎣ ⎦  (6) 

     To be more precise on the behaviour of each fictive 
machine, we analyse the COG at a rated angular speed: 

e e pt N tθ ω ω= ⋅ = ⋅ ⋅ . So, we have the following equations: 
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     Finally, by transforming (6) and (9): 
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     It appears that each elementary machine gives half of 
the torque value, plus a pulsating component with the 
same amplitude value, but with a frequency twice that of 
the speed rotating frequency. These classical results show 
how the implicit mechanical linkage between the two 
fictive machines eliminates the pulsating component. 

 
3.4 The d-q synchronous reference frame 
Park’s transformation is defined by: 
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     Fig.6 presents the Causal Ordering Graph of the 
electrical part in the synchronous reference frame: 
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Fig.6: COG of the electrical part of a PMSM in (d-q) 

 
     The different relations for the flux axis are given by: 

2 Ld d d RdR d V V e V→ = − − , 7 d dR d e k ω→ = ⋅  

3 d d Ld
dR d L i V
dt

→ ⋅ = , 4 Rd dR d V R i→ = ⋅  

5 d d dR d T k i→ = ⋅ ,  
( )6 d p q qR d k N L i→ = − ⋅ ⋅  

     The different relations for the torque axis are given by: 
2 Lq q q RqR q V V e V→ = − − , 7 q qR q e k ω→ = ⋅  

3 q q Lq
dR q L i V
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     Wherein: 
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     The R1 processor represents Park’s transformation 
matrix described in (11). The benefits of Park’s 
transformation are the conversion of the sinusoidal values 
of voltage, fluxes and currents into constant values, which 
facilitate the controller design. That is represented in 
Fig.6 with the interaction in the R1 processor of the 
electrical angle. So, this sinusoidal envelop is reported 
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outside the electrical model in the R1 processor, as a 
simple transformation operator. 
     The R8 processor includes the torque expression, 
which is defined from two elementary machines (13). We 
can notice that the direct axis d represents the flux axis, 
and the quadrature axis q represents the torque axis. 
Finally, we can notice that each machine looks like a DC 
motor. 

 em d q d q q dT T T i iφ φ= + = ⋅ − ⋅  (13) 

     The R5d, and R7d processors denote a gyrator. The 
gyrator in COG formalism is used as a symbol of all 
electromechanical conversions. The variables of dual 
energy nature are modulated by a coefficient k that is 
characteristic of the object; the gyrators associate 
processors of comparable energy nature. Here, the 
coefficients kd and kq are defined by the R6d and R6q 
processors respectively. The disadvantage of Park’s 
transformation is that the coefficients kd and kq needed for 
the gyrator denote a cross coupling between the two axes. 
Consequently, in the controller design, the control of 
these flux loops will be more complicated, especially in 
case of saturation. 
 
3.5 Conclusion 
We have obtained electrical models in the stationary 
reference frame (abc) and in Concordia’s reference frame 
(α-β). The Causal Ordering Graph of each model has 
exactly the same structure. Evidently, processor relations 
are different, depending on the applied transformation 
matrix. So, in the stationary reference frame, the three 
currents are sinusoidal with an offset of 2π / 3 on each 
other. Thus, for a closed-loop control strategy, controllers 
have to compensate error on sinusoidal signals. 
     In Concordia’s reference frame, there are only two 
sinusoidal currents in quadrature. So, two controllers only 
will be required to design the torque control loop. 
     Finally, we have obtained an electrical model in Park’s 
reference frame. The two currents id and iq are constant at 
a constant speed. But only one current iq is really needed 
to assume the torque control. Indeed, if the second current 
id is settled to zero, then the torque turns into Tem = K * iq, 
which will clearly reduce the control structure. 
 
 
4   Rotary / linear motor analogy 
4.1 Structure of a linear synchronous motor 
Fig.7 represents an example of PM linear synchronous 
motor geometry: A LIMES400/120 by Siemens. 
     The moving part is called the forcer. It’s composed of 
a three-phase winding called the primary. τp represents a 
pole pitch step between two consecutive magnetic poles 
of the secondary [18]. 
 

 
Fig.7: Principle schematics of a PMLSM (Siemens) 

 
4.2 Principle of the rotary / linear analogy 
     For a rotary motor, the three armature windings are 
each shifted by an electrical angle of 2π / 3, and each 
winding covers an electrical angle of π in the stationary 
reference. By analogy, the stator armature windings of a 
PMLSM are each shifted by a distance of   2 τp / 3, and 
every winding covers a distance of τp in the linear 
reference frame. 
     The electrical angle along which the primary of the 
PMLSM moves in the linear reference frame can be 
expressed by: 

 ,e p p
p

N x with N πθ
τ

= ⋅ =  (14) 

     Here, Np is the electrical position constant of the 
PMLSM. Equivalences of the electrical angle and the 
electrical angular speed between rotary motors and 
PMLSMs are shown in Table 1. 
 
Table 1: Equivalences of electrical angle and electrical 
angular speed between rotary motors and PMLSMs 
 

Parameter name Rotary motor PMLSM 

Electrical angle ( eθ ) e pNθ θ= ⋅  e pN xθ = ⋅

Electrical angular 
speed (ω ) pNω = ⋅Ω  pN vω = ⋅  

 
     Classically in machine tool applications, the linear 
motors are star-connected with an inaccessible neutral 
wire: only two currents are independent. Thus, the (α-β) 
reference frame is more appropriate to represent such 
systems. 
 
4.3 More detailed model 
In this section, we can go further into our PMLSM model. 
Indeed, among the assumptions we have taken, we have 
considered that the geometry of a linear motor is the same 
as that of a rotary motor. 
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     Models of linear motors can be different with models 
of rotary motors [18]. Thus, for example, we can find: 

1) Longitudinal end-effects forces are added to 
cogging forces, which turn into detent forces: 

 ˆ ˆ12 sin(6 ) sin(2 )det cog p ext pR T T N T Nθ θ→ = ⋅ ⋅ + ⋅ ⋅  (15) 

2) Back-electromotive forces have harmonics 
mutation, as in the R6 processor of Fig.5 [19]: 
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3) Balanced inductances (1) are changed to 
unbalanced inductances [20]: 
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5   Conclusion 
In this paper, we have presented the modelling of a 
synchronous motor in order to design an optimal control 
structure. This Part I present the electrical model of a 
PMSM in the (abc) reference frame, the (α-β) stationary 
reference frame  and the (d-q)reference frame. Each time, 
the Causal Ordering Graph (COG) formalism has been 
applied to analyse the waveforms and the interactions 
between the voltages, the currents and the fluxes. We 
have shown that our models can be used with rotary and 
linear synchronous motors. Some of the specificities of 
linear motors have been explained. In Part II, we present 
the control design by applying the inversion principle of 
the COG of our PMLSM models. 
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