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Abstract: - This paper presents an application of CART algorithms for online security evaluation and preventive control 
of power system. The CART algorithm generates a security classifier in the form of a decision tree. The effect of various 
design parameters on the performance of the classifier has also been investigated. The method has been applied on an 
IEEE test systems and the results have been reported. 
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1 Introduction 
The competitive business environment has forced modern 
electric power industries to operate their systems closer to 
their transient security limits. Under such conditions even 
a small disturbance, if not taken care of, could endanger 
system security. Therefore there is a pressing need to 
develop fast on line security monitoring methods, which 
could analyze the level of security and suggest possible 
control strategy.  

A complete answer about power system security 
requires evaluation of transient stability of power systems 
following some plausible contingencies. Several method 
for fast transient stability evaluation have been proposed 
in the past by adopting namely direct methods, pattern 
recognition (PR) technique, Decision Tree (DT) method 
and Artificial Neural Network (ANN) approach[1].  The 
direct methods & PR Methods are not suitable for on line 
transient security evaluation of power system [2]. Neural 
Networks have shown great promise as a means of 
predicting security of large power systems [3, 4]. But 
because of their black box type nature, neural network 
based security classifiers are not able to provide 
information about preventive control. Though, some 
efforts have been made to infer this information from the 
hidden layer of the neural network but under very 
simplified modeling assumption [5].  The Decision Tree 
based classifiers, on the other hand, are known for their 
interpretability and therefore can be used to infer 
preventive control strategy. 

The DT method for on line transient security 
assessment was first proposed by L. Wehenkel et. al [6]. 

Since then extensive research affords [7-17] have been 
made in this direction in which different aspect of power 
system security were investigated. Almost all the research 
efforts exploited Inductive Inference Method except S. 
Rovnyak et. al. [15]. They have used CART algorithm 
[18] to generate DT classifier. However the classifier 
generated by Rovnyak et. al. can not be used for 
preventive control purposes due to the nature of attribute 
set chosen. 

This paper presents a DT method for on-line security 
evaluation and preventive control of power system. In this 
method, CART algorithm [18-20] has been used to 
generate DT classifier which takes only a few system 
parameters to predict system security and to provide 
necessary preventive control strategy. The proposed 
method attempts to generate a classifier which is 
independent of minor changes in power system topology. 
A comparison of different node splitting criteria have also 
been explored and reported. The method has been applied 
and tested for its applicability and effectiveness on IEEE 
57 bus system. 
 
 
2 The DT methodology 
The proposed method uses DT as a classifier which 
classifies an operating state of a power system into 
‘secure’ or ‘insecure’ class under a predefined 
contingency set. The DT classifier is generated using an 
off-line data set, which is generated by the most accurate 
power system solution methodology. The complete 
description of DT methodology is beyond the scope of 
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this paper and can be referred [18-20]. Nevertheless, it is 
important to discuss the basic design procedure, which 
involves the following steps: 
1. Attribute selection 2. Data set generation 3. DT 
building algorithm     4. Performance evaluation. 

The attribute selection is an important step. The 
guiding principal for the choice of attribute set is to select 
those system variables which are monitorable, 
controllable and which adequately characterized an 
operating state of a power system from security 
classification point of view. C.M. Arora and Surana [21, 
22] have derived that the real and reactive power 
generations of generators carry sufficient information 
about the class of system security (secure or insecure 
system security. This fact is also supported by the 
outcome of the research paper [3]. Therefore, the 
proposed initial feature set consists of pre-disturbance 
real and reactive power generation of each generator. 

The second step in the design of DT classifier is data 
set generation for the classifier training. The primary 
objective of data set generation is to obtain a sufficiently 
rich data base containing plausible operating states of 
power system. To generate a data set, initially a large 
numbers of load samples are randomly generated in the 
typical range of 50 to 150 percent of their base case 
values. For each load sample (load combination) optimal 
power flow (OPF) study is performed to obtain steady 
operating state. A disturbance (fault), from a predefined 
set of contingency, is simulated for a specified duration of 
time. Using dynamic stability studies, load angle 
trajectories of all generators is computed and plotted over 
a period long enough to ascertain system stability under 
the specified disturbance. Similarly for each of the 
disturbances from the contingency set dynamic 
simulation is performed to ascertain system stability 
under the corresponding disturbance. For carrying out 
dynamic simulation, numerical integration techniques is 
used as it has the flexibility to include all kind of 
modeling sophistication and thus is able to provide 
desired degree of accuracy. If a steady state operating 
point is found to be stable, for all disturbances of the 
contingency set, the operating state is assigned “secure 
(0)” class label else it is assigned “insecure (1)” class 
label. During data set generation some operating states 
are also generated in the neighborhood of optimal 
dispatch to ensure inclusion of all realistic operating 
states. Some frequent topological changes may also be 
considered during data generation. 

To generate the DT classifier commercially available 
CART software has been used [23]. The aim of CART is 
to construct an efficient piece-wise constant estimator of 

a classifier from a learning set. This classifier is in a form 
of a tree. The tree is structured in top-down fashion 
consisting of various test and terminal nodes. Each test 
node is associated with an optimal splitting rule and a 
subset of the Learning set (LS). A terminal node is a class 
pure node. A built tree is, thus, a hierarchical organization 
of the LS into a collection of subsets. The most general 
subset is the LS itself and corresponds to the top (root) 
node of the DT. Starting from the root node, at each level 
of the DT, the corresponding subsets are partitioned on 
the basis of some optimal splitting rules. These rules are 
in the form of "if- then-else" rules. The lower is the level, 
the more refined is the corresponding partition. Therefore, 
generating successors of a given non-terminal (test) node 
amounts to reducing the uncertainty about the 
classification. To split a given node (subset), the CART 
algorithm makes use of impurity functions such as Gini-
Index, Entropy and Class-probability based impurity 
functions. The particular choice of the splitting criteria 
depends on the problem in hand. 
 
3 Simulation and results 
To investigate the effectiveness of the proposed method a 
study was performed on IEEE - 57 bus system. The 
system consists of 7 generators, 57 buses, 67 transmission 
lines, 18 transformers and 42 loads. The diagram of the 
system is given in [24] and the data were taken from [24, 
25]. It is assumed that contingency set contains only one 
disturbance, which is a 3-phase fault on the 400kV 
transmission line connecting buses 8 and 9, near bus 9. 
Duration of the disturbance is assumed to be 210 ms, 
which is cleared by opening the line at both the ends. By 
varying the loads randomly from 50% to 150% of their 
base case values two sets of data have been generated. 
The first data set consists of 1000 operating states with 
fixed system topology. Second data set consisting of 2200 
operating states is generated under 12 different 
topological conditions. The changes in topology are 
spread through out the system and include removal of 
single 400kV transmission lines 2, 5, 14, 15, 19 and 28 
one at a time, simultaneous removal of a set of three 
transmission lines at a time such as (2, 5, 14), (15, 19, 28) 
etc. The second data set is then shuffled several times to 
thoroughly mix the data of different topology.  
Since the there are 7 generators in the system therefore 
attribute set consists of the 14 attributes (features) namely  
PG1, PG2, PG3, PG4, PG5, PG6, PG7, QG1, QG2, QG3, 
QG4, QG5, QG6 and QG7.  However, during data 
generation it has been found that generators 2, 3, 4 and 6 
are always operating at their upper active power 
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generation limits and so corresponding features carry no 
discriminating information about system security. 
Therefore these features can be ignored. Thus the 
attribute set consists of following 10 features:   
 
A = [PG1, PG5, PG7, QG1, QG2, QG3, QG4, QG5, QG6, 
QG7]  
 

By applying CART algorithm on the learning set of 
500 load samples of fixed system topology 3 different DT 
classifiers have been generated as shown in the Fig. 1, 
Fig. 2 & Fig. 3. Each block of the non terminal nodes 
defines an optimal splitting rule in the form of  

 
A(i) <= threshold value?  

 
Here A(i) is the ith feature.  

 
 

Fig. 1: Tree generated using CART (Gini-Index) 
 

 
Fig. 2: Tree generated using CART (Entropy) 

 

 

 
 

Fig. 3: Tree generated using CART (Class Probability) 
 

 
The test results of the classifiers on a test set of 300 

load samples are summarized in Table 1. The result 
shows that entropy based classifier gives better accuracy. 

 
Table 1 

 
Percentage test set Error 

Gini-Index 
 

Entropy Class Prob. 

3.91675 3.666 4.16675
 
 

To investigate the effect of the size of training set on 
performance of DT classifier 5 different set of DT 
classifiers have been generated using 5 different training 
set and the corresponding test results are summarized in 
Table 2. The error versus size of training set curve is 
shown in figure 4. 

 
From the results it can be observed that for smaller 

training set size the entropy based splitting criteria gives 
poor accuracy rate as compared to the gini-index based 
and class-probability based criteria. However when the 
size of available training set is large the entropy based 
classifier gives better accuracy rate as compared to the 
others. 
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Table 2: Fixed Topology 
 

Percentage test set Error Training 
Set Size Gini-

Index 
 

Entropy Class Prob. 

300 5.7335 6.23225 5.698
400 4.85875 5.27375 4.85875
500 4.68125 4.73075 4.731
600 4.1875 3.6875 4.25
700 3.91675 3.666 4.16675
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Fig. 4: Percentage Error versus Training Set Size curve 
 
Moreover it can also be observed that as the size of 
training set increases there is appreciable increase in the 
accuracy of the classifier and when the size of training set 
is large enough no appreciable change in accuracy is 
observed.  
 

Modern power systems are prone to frequent changes 
in system topology due to many factors such as 
maintenance, repair etc. Therefore, special care needs to 
he taken to minimize the effect of topology changes on 
the performance of the neural network. One approach to 
deal with this problem is to build different DT classifier 
for each possible system topology and to use the specific 

classifier that reflects the current topology of the system. 
This approach is only practical when there are a few 
possible changes in system topology. Another approach is 
to build a DT classifier which is independent of changes 
in system topology. This allows a single DT classifier to 
tackle security assessment problem of the power system 
under varying system topology. This also allows the 
single network to predict security of the power system 
under unexpected topological changes.  
 

In order to investigate the effect of topology on the 
performance of DT classifier 8 set of DT classifiers have 
been generated with different training sets taken from 
varying topology data set. The corresponding results are 
summarized in Table 3 and figure-5. 
 

Table 3: Varying Topology 
 

Training Set Size Gini Entropy Class Prob. 
400 6.2168 7.1674 5.2908 
800 4.6308 3.6958 4.1922 
900 3.9632 3.6518 4.1094 
1000 4.1592 3.8938 3.8276 
1100 3.641 3.2882 3.2878 
1200 2.88 2.6 2.54 
1300 2.4666 2.0664 2.4442 
1400 2.75 1.975 2.575 

 
 
From the test results it can be observed that if the DT 

classifier is generated using a varying topology data set 
the accuracy of the classifiers is not affected. In other 
words the classifier becomes independent minor changes 
of power system topology. Therefore a single classifier 
can be used to predict security of power system even 
under changing topology. It may also be observed that for 
smaller training set size the entropy based splitting 
criteria gives poor accuracy rate as compared to the gini-
index based and class-probability based criteria. However 
when the size of training set is large the entropy based 
classifier gives better accuracy rate as compared to the 
others. Moreover it can also be observed that as the size 
of training set increases there is appreciable increase in 
the accuracy of the classifier. When the size of training 
set is large enough no appreciable change in accuracy is 
observed. In fact the accuracy of the classifier slightly 
decreases. 
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Fig. 5: Percentage Error versus Training Set Size curve 
for varying topology 

 
 

One of the important properties of the proposed DTC 
is that it provides security classification rules in the form 
of constraints on the system attributes i.e., active and / or 
reactive power generation of some or all generators. That 
is for secure operation 

 
 

PGi <= PGis   (1) 
 
QGi <= QGis   (2) 
 
 

Where PGis and QGis are the upper limits of active 
and reactive generation of ith generating unit, imposed by 
DTC for secure operation. Therefore, when the operating 
state of the power system is insecure, it violates some or 
all of the above constraints. To bring the system back into 
secure operating state, the generators are re-dispatched 
optimally in a manner to satisfy the security constraints 
(1) and (2). The DT provides several re-dispatch 
alternatives. The choice of an appropriate re-dispatch 
alternative would depend upon the feasibility of the 
solution and nearness to secure terminal node. 
 

4 Conclusion 
The transient security evaluation of modern power system 
is becoming a major concern for on line operation. This 
paper investigates the potential of CART algorithms for 
on-line security evaluation and preventive control of 
power system. The results obtained on IEEE 57-bus 
system show that the CART based DT classifier are able 
to predict system security with a high degree of accuracy. 
The effects of various CART design parameters have also 
been investigated. It is found that in general a DT 
classifier requires a large training set and entropy base 
splitting criteria is the most suitable criteria for security 
evaluation using DT classifier. It has been found that DT 
classifier can also tackle security assessment problem of 
the power system under varying system topology. The DT 
approach provides preventive control strategy in term 
generation re-dispatch alternatives. The choice of 
appropriate preventive control action would depend upon 
the feasibility and economic aspect of the preventive 
control solutions provided by the DT classifier. The 
approach can be generalized to handle multi-contingency 
security assessment under varying topological conditions.  
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