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Abstract: The identification stage of Vector Autoregressive Moving Average (VARMA) models plays an 
important role in multivariate time series analysis and it has been discussed from different approaches in 
literature. In particular, the notion of Scalar Component Model (SCM) is highly ingenious and emerges in [7] 
as a fairly natural way of modelling multivariate time series. The idea of SCM is of enormous benefit 
because the effect is the reduction of parameters in VARMA representation and it could simplified 
drastically the complexity in estimation. In the procedure to identify SCMs ([7]), the authors use subjective 
choices of a parameter denoted by h. Varying the value of h is likely to result in substantially different orders 
for the SCM. Then, of great interest is the question about how robust is the identification procedure with 
regard to the choice of h. Therefore, the aim of this paper is to find necessary and sufficient conditions to 
choose the minimum value of h, such that the procedure to identify SCMs will not lead to theoretical errors. 
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1  Introduction 
Vector Autoregressive Moving Average 
(VARMA) models are widely used in 
econometrics to model multivariate time series. 
They have been extensively studied by a large 
number of researchers, see e.g. [2], [3], [4], [6] 
and their references. This work is centered on the 
specification stage. 

In [7] it is discussed an approach for 
modelling vector time series through Scalar 
Component Models (SCMs). The primary goal of 
the authors was to provide a practical model 
identification procedure. For a given process, they 
intended to find an overall parsimonious model 
and to simplify structures. 

It is worthwhile pointing out that at the 
end of [7] a section is included in which many 
experts make their comments and they raise key 
questions about its practical and its theoretical 
contributions. An issue discussed by these experts 
triggered our paper, specifically, the ambiguity in 
the choice of a parameter, denoted by h, which 
controls the dimension of certain matrix, the 

effective sample size in estimation, the certainty 
in the theoretical specification of the model, etc. 

The aim of this paper is to find necessary 
and sufficient conditions to choose h with the 
minimum value, such that the identification of 
SCMs will not lead to theoretical errors. 
 The paper is organized as follows. Section 
2 introduces the idea of Scalar Component 
Models to describe a component structure in a 
multivariate framework. Moreover we provide a 
summary of results in [7] in which the analysis is 
focused. In Section 3 we propose the definition of 
sure overall orders. It is crucial in this paper and 
its utility will be clear in the main results, 
Propositions 1 and 2 of th section. Finally, in 
Section 4 we give conclusions and new directions 
for future research. 
 
 
2  Definitions and Notations 
In order to lay the theoretical foundations where 
essential points will be posed and solved, this 
section provides a summary of results in which 
this analysis is focused. Most precisely, it consists 
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of a description of the table proposed in [7] to 
identify a pair of overall orders for the VARMA 
representation. 
 Let zt=(z1t, z2t, ... , zkt)t be a k-dimensional 
process following the VARMA(p,q) model  

 
φ(B)zt = θ(B)at                        (1) 

 
where φ(B)=I-φ1B-...-φpBp, θ(B)=I-θ1B-...-θqBq, 
the φs and the θs are kxk matrices, B is the usual 
backshift operator and ak is a sequence of 
independent k-variate random vectors with mean 
zero and definite covariance matrix Σ. The 
process is stationary if all the zeros of φ( )B  are 
outside the unit circle and invertible if all the 
zeros of θ( )B  are outside the unit circle.  

This model is a generalization of ARIMA 
models in [1]. However, this direct generalization 
creates two mayor difficulties: the overflow of 
parameters (the estimates of which are often 
highly correlated) and the lack of identifiable 
models because exchangeable models appear 
(with the same or different pair of minimal 
orders). 

Exchangeable models are special features 
of vector time series that do not occur in the 
univariate case. Two VARMA models are 
exchangeable if they are of finite order and give 
the same probability distribution of zt. Since they 
have the same probability distribution, they give 
the same covariance structure and provide the 
same inference. 
 The procedure proposed in [7] can 
recognize exchangeable models when they exist. 
The authors introduced the concept of Scalar 
Component Model (SCM) as follows: 
 
Definition 1.- Given the VARMA(p,q) model (1), 
we say that a non-zero linear combination 
yit= vt

0 zt, where v0 is a k-vector, follows a Scalar 
Component Model with orders (pi,qi), SCM(pi,qi), 
if v0 has the properties: 

t
p

t
0 0v

i
≠φ  where 0≤pi≤p 

t
j

t
0 0v =φ  for j=pi+1,...,p 

t
q

t
0 0v

i
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and t
j

t
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Since t
t
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0 a)B(vz)B(v θ=φ  the structure of yit 

can be written as 

yit + ∑ ∑
= =

−− +=
i ip

1j

q
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jt
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jt
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0jt

t
j ahavzv  

where j
t
0

t
j vv φ−=  and j

t
0

t
j vh θ−= . 

 
 By allowing v0 to be an arbitrary non-zero 
vector, the idea of an SCM is a direct 
generalization of the model of each component zit 
in the VARMA framework so that the model 
structure can be simplified. The SCM is a device 
designed to capture the structure of a component 
within a vector model. It is not a univariate model. 
Note that the orders (pi,qi) of the SCM are lesser 
than or equal to the orders (p,q) of the overall 
VARMA representation. Therefore, given a 
VARMA  process zt,  the  transformation  yt=V0zt  
-where V0 is a kxk non-singular matrix associated 
with k SCMs of orders (pi,qi), i=1,…,k- could lead 
to considerable parsimony in parameterization of 
the model. 

Since the choice of the components, their 
orders and their SCM structures are not unique, 
[7]'s goal is to obtain components which have the 
following minimal order property.  
 
Definition 2.- Let yit follow the SCM(pi,qi) 
structure and write oi=pi+qi. Let 
OR(yt)={o(1)≤o(2)≤ ... ≤o(k)} be the set of the 
ordered ois. We say that a vector of k linearly 
independent (l.i.) scalar components yt is of 
minimal order if there exists no other vector *

ty of 
k l.i. components, with  
OR( }o...o{)y *

)k(
*

)1(
*
t ≤≤=  such that 

)i(
*

)i(
oo ≤  

for 1≤i≤k and a strict inequality holds for some i. 
 

In [7], the concept of overall orders is 
basic and it is infered in the following way: 
 
Definition 3.- Given a set of k l.i. SCMs with 
orders (pi,qi), i=1,2,...,k, its pair of overall orders 
is (p,q), where p=max{pi}, q=max{qi}. 
 

Nevertheless, as it will be seen later, it 
will be necessary to take up again and improve the 
definition of this concept, so that the essential 
matters of this work can be solved. 
 
 
2.1  The Increment Pattern of Zeros 
The authors in [7] use properties of 
autocovariance matrices of zt in finding SCMs. 
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The rank properties and the eigenstructure of the 
sample covariance matrices are the mathematical 
tools they use to justify their procedure. 
 Let A be and rxs real matrix and x be an 
s-dimensional vector. We say that x is a right 
vector corresponding to a zero of A if Ax=0. It is 
well known the rank(A)=s-v where v is the 
number of zeros associated with l.i. right vectors 
of A.  

 
Next, for h≥0, m≥0, j≥0, let  
 

Γ(m,h,j)=
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be the k(h+1)xk(m+1)-dimensional matrix where 
Γi=E(zt-i 

'
iz ) is the lag i autocovariance matrix of 

zt.  
 
In [7] D(m,h,j) is defined to be: 
 a) the number of zeros of Γ(m,h,j) for 
 m=0 or j=0. 
 b) the diagonal increment of number of 
 zeros between Γ(m,h,j) and Γ(m-1,h,j-1) 
 for m≥1 and j≥1. 
D(m,h,j) is arranged in a two-way table according 
to (m,j), m≥0, j≥0.  

If the process can be represented by a set 
of k l.i. SCM(pi,qi), i=1,2,...,k, having the minimal 
property, p=max{pi}, q=max{qi} and it has not 
any other non-nested exchangeable 
representation1, in [7] it is affirmed that, for h≥m,  

 

D(m,h,j) 
⎩
⎨
⎧
<

≥≥=
otherwisek

qj,pmifk
 

 
 In the case, the process has another 
VARMA(s,r) exchangeable representation whose 
SCMs also have the minimal order property, 
being (p,q) and (s,r) non-nested orders, 
 

D(m,h,j) 
⎩
⎨
⎧
<

≥≥∪≥≥=
otherwisek

)rj,sm()qj,pm(ifk
 

                                                           
1 The orders (p,q) and (s,r) of two VARMA 
exchangeable representations are said to be non-nested 
if either (p<s, q>r) or (p>s, q<r). 

 
This can be generalized to the case in 

which zt has more than two minimal exchangeable 
representations.  

An example given in [7] is:  
 

zt= t1t az
00
20

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−  

 
 

Pattern of number of zeros of Γ(m,h,j) 
 0 1 2 3 4 

0 1 2 2 2 2 
1 2 3 4 4 4 
2 2 4 5 6 6 
3 2 4 6 7 8 
4 2 4 6 8 9 

 
Diagonal increments: D(m,h,j) 

 0 1 2 3 4 
0 1 2 2 2 2 
1 2 2 2 2 2 
2 2 2 2 2 2 
3 2 2 2 2 2 
4 2 2 2 2 2 

 

The authors in [7] affirm that this table 
makes it possible to identify a VARMA overall 
order of zt by searching for a lower right 
rectangular pattern of k in each place (m,j) for 
m≥p, j≥q. In the last example, taking into account 
that k=2, we could identify as a pair of overall 
orders any (p,q) such that p≥1 or q≥1. 
 In the last pages (pp. 197-213) of [7], 
several experts discuss the paper profoundly, 
underlining its contributions and raising questions 
about the limitations of the proposed method. For 
instance, Priestley comments: "Of further interest 
is the question about how robust is the 
identification procedure with regard to the choice 
of m and h. (...) Is varying the value of m and/or h 
likely to result in substantially different orders for 
the component models?" 

Regarding the choice of h, some 
commentaries in [7, pp. 176-177] are ambiguous 
and could lead into errors. It seems appropriate to 
quote them: 

“In theory, h may assume any integer that 
is greater than or equal to m, and theorem 3 
suggests that a high value of h is preferred. In 

Proceedings of the 8th WSEAS International Conference on APPLIED MATHEMATICS, Tenerife, Spain, December 16-18, 2005 (pp392-397)



 4

practice, h controls the dimension of the matrix 
A(m,h,j) (…), it controls the effective sample size 
in the estimation (…). Thus, a low value of h 
would be preferable. As a compromise, we 
suggest using h=m in this first stage of the 
analysis to reduce computation. However, this 
choice of h has the risk of underspecifying MA 
models in the presence of skipping MA lags, e.g. 
seasonal MA models. (…) other values of h may 
be used when skipping lag is likely to occur. 

(…) 
In searching for SCMs of minimal orders, 

it is reasonable to let h be guided by the specified 
overall order (p,q). For instance, in declaring that 
yt has an SCM of order (0,0) (…) under the 
condition that the overall model is ARMA(p,q) 
(…). In general, we use h=m+q-j at the (m,j) 
position.” 

 
Therefore, we have no clear ideas to 

choose a suitable h. and we have focused this 
work on the specific objective that follows:  

To find necessary and sufficient 
conditions to choose h in Γ(m,h,j) with the 
minimum value needed, so that, the theoretical 
affirmations in [7] will not lead to errors due to 
ambiguity. 
 
 
3  Sure overall orders 
The first step needed to analyze in depth this 
aspect is to detect and to outline the definition 
which is crucial in this analysis. As it has been 
mentioned, h can be guided by an specified 
overall order. However, the concept of overall 
order, as it is understood in [7] does not allow to 
answer the question posed. The concept of overall 
order in [7] is "unsure" and “non-optimum”. 
“Unsure” in the sense that sometimes h can be 
smaller than that required and “non-optimum” in 
the sense that sometimes it can be greater than 
that required. After what has just been said, it 
seems logical to propose the following definition 
whose utility will be clear in Propositions 1 and 2. 
 
Definition 4.- We say that (s,r) is a pair of sure 
overall orders if and only if  
rank Γ(s-1,s-1,r-1)=rank Γ(s+u,s+u,r+u)    ∀ u≥0 

 
The following results contribute with subtle 
improvements, though important both in theory 
and in practice. Moreover, the proofs show how 

you can obtain all the sets of k l.i. SCMs with 
certain overall orders. 
 
Proposition 1.- If (s,r) is a pair of sure overall 
orders, then for m≥s-1 and j≥r-1, the value rank 
Γ(m,h,j) is independent of h for h≥m. Therefore, it 
can be obtained all the possible SCMs with 
overall orders (s,r) from the matrix Γ(s,h,r), 
considering h=s-1. 
 
Proof: 
If (s,r) is a pair of sure overall orders ⇒  
rank Γ(s-1,s-1,r-1)=rank Γ(s+u,s+u,r+u), ∀ u≥0 
⇒ the first k(u+1) columns of Γ(s+u,s+u,r+u) are 
linearly  dependent  (l.d.)  of  the  columns  in   
Γ(s-1,s-1,r-1), and the last k(u+1) rows of 
Γ(s+u,s+u,r+u) are l.d. of the rows in Γ(s-1,s-1,r-1) 
⇒ rank Γ(s-1,s-1,r-1) = rank Γ(s,s-1,r) =  
rank Γ(s,s+u,r), ∀u≥0. 
As rank Γ(s-1,s-1,r-1) = rank Γ(s,s-1,r), according 
to de Rouche Frobenius' Theorem, the system 
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      (2) 

 
has a solution. Besides, as rank Γ(s-1,s-1,r-1) = 
rank Γ(s,s+u,r), ∀u≥0, any solution of (2) is also 
solution of 
 

Γi-1φ1 + ... + Γi-sφs = Γi          ∀i≥r+1 
 
Consequently, zt has a representation 
VARMA(s,r)  

zt - φ1zt-1 - ... -φszt-s = at - θ1at-1 - ... -θrat-r 
Obviously, ∀V0 /⏐V0⏐≠0, the vector yt=V0zt can 
be represented as k SCMs l.i. with overall orders 
(p,q) such that (p,q)≤(s,r) because 
V0zt -V0φ1zt-1-...-V0φszt-s=V0at -V0θ1at-1 -...-V0θrat-r 
Note that it could be happen that V0φp+1=...=V0φs= 
V0θq+1=...=V0θr=0.      

 
The following result tries to take into account the 
process where ∃ k SCMs l.i. with overall orders 
(p,q) and, however, (p,q) is not a pair of sure 
overall orders. From Theorem 2 and Proposition 2 
in [5], if zt follows a VARMA model there exists 
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at least a pair of sure overall orders (s,r) and if 
(i,j)≥(s,r) then (i,j) is a pair of sure overall orders2.  
 
Proposition 2.- Given a pair of sure overall orders 
(s,r): ∃ k SCMs l.i. with overall orders (p,q) where 
(p,q)≤(s,r) if and only if 
rankΓ(p-1,r+s-q-1,q-1)=rankΓ(p+u-1,p+u-1,q+u-1), 
where (p+u,q+u) is a pair of sure overall orders. 
 
Proof: 
"⇒"  
∃ k SCMs l.i. with overall orders (p,q) ⇔  

Γi-1φ1 + ... + Γi-pφp = Γi          ∀i≥q+1 
⇔ the system 
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has solution ⇔ 
rank Γ(p-1,r+s-q-1,q-1) = rank Γ(p,r+s-q-1,q) and, 
moreover, 
rankΓ(p-1,r+s-q+v,q-1)=rankΓ(p,r+s-q+v,q) ∀v≥-1. 

Since ∃ k SCMs l.i. with overall orders 
(p,q) then  ∃ k SCMs l.i. with overall orders  
(p+i,q+i), ∀i>0, then 
rankΓ(p,r+s-q+v,q)=rankΓ(p+1,r+s-q+v,q+1) ∀v≥-2, 
rankΓ(p+1,r+s-q+v,q+1)=rankΓ(p+2,r+s-q+v,q+2) ∀v≥-
3, 
 ... 
rankΓ(p+u-2,r+s-q+v,q+u-2)=rankΓ(p+u-1,r+s-q+v,q+u-1) ∀v≥-
u. 
 Choosing u such that p+u=s and q+u≥r, 
or, p+u≥s and q+u=r, then (p+u,q+u) is a pair of 
sure overall orders and p+u-1≥r+s-q-2. 
Therefore  
rankΓ(p-1,r+s-q,q-1)=rank Γ(p+u-1,p+u-1,q+u-1). 
"⇐" 
Since (p+u,q+u) is a pair of sure overall orders, 
rank Γ(p+u-1,p+u-1,q+u-1)= rank Γ(p+t,p+t,q+t), 
∀t≥u. Therefore, since  
rank Γ(p-1,r+s-q-1,q-1)=rank Γ(p+u-1,p+u-1,q+u-
1), any solution of  
 

                                                           
2 Theorem 2 and Proposition 2 in [5] are given in the 
field of Matrix Padé Approximation. 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

Γ

Γ
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

φ

φ

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

ΓΓ

ΓΓ

+

+

−+−+

+−

sr

1q

p

1

psr1sr

1pqq

MM

L

MM

L

 

 
is a solution of 
 

Γi-1φ1 + ... + Γi-pφp = Γi          ∀i≥q+1 
 
Therefore, zt is a vector of k SCMs l.i. with 
overall orders (p,q).      
 
 The most important implication of 
Proposition 2 is that:  
if (p,q) is not a pair of sure overall orders but ∃ k 
l.i. SCMs with overall orders (p,q), if we choose a 
pair of sure overall orders (s,r) such that: 
 i) (s,r)≥(p,q) and  
 ii) s+r≤i+j if (i,j) is a pair of sure overall 
 orders verifying (i,j)≥(p,q),  
then: 
it can be obtained all the possible SCMs with 
overall orders (p,q) from the matrix Γ(p,h,q), 
considering h=r+s-q-1. 
 
 
4  Conclusions 
This paper can be considered as a little refinement 
of the identification procedure in [7]. The 
definition of a pair of sure overall orders -instead 
of a pair of overall orders- improve the 
interpretation of the results and reduce the 
computation involved -dimension of matrices 
involved has been reduced. As a consequence, 
statistical properties will improve too. 
 As an extension of this paper, we would 
like to seek necessary and sufficient conditions to 
know whether the proposed k SCMs are 
identifiable or not. In the negative case, it would 
be necessary in the estimation stage to know 
which are all the redundant parameters. 
 The whole procedure lends itself to a 
future implementation in standard statistical 
packages and it could be anticipated a significant 
progress in multivariate time series analysis of 
economic data. 
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