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Abstract:-The triply differential cross-section for the inelastic Compton scattering of photons by K-shell bound 
electrons is expressed in closed form in terms of four high transcendental Lauricella functions FD of  four  variables 
and six parameters, all complex. In order to obtain the doubly differential cross-section, a numerical integration 
over the directions of the final electron is needed. The aim of this paper is to present a method for both evaluation 
and integration over the solid angle of Lauricella functions, valid for any photon energy and target's atomic 
number. While all the researchers seem to avoid even the evaluation of these functions, we present a new 
quadrature method, based on the analysis of the pathological behavior of the integrand near origin. Also, the solid 
angle integration process is achieved and discussed. Keeping the full form of the Lauricella functions allowed us to 
include in the doubly differential cross-section the exact dependence on the angles describing the directions of the 
final electron and photon. The accuracy of evaluating the Lauricella functions was checked by using recurrence 
relations between them, and a fairly good precision was observed for any physical parameters and variables 
occurring in two photon bound-free electron transitions. We mention that our analytical approach of the triply 
differential cross-section allows the numerical calculation of the doubly differential one in seconds using an 
average personal computer. Also, our results based on these evaluations display a good agreement with direct 
numerical calculations of the S-matrix element performed by Bergstrom et al [Phys. Rev. A 48, 1134 (1993)] on 
Cray computers. 
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1. Introduction    
  
Since Schwinger [2] gave an integral representation 
for the Green function of the Schrodinger equation 
with Coulomb field, it became possible to perform 
analytical calculations for obtaining the nonrelativistic 
differential scattering amplitudes for two photon 
atomic processes in closed form. 
 Because the integration contour introduced by 
Schwinger's coulombian Green function is the same 
integral contour occurring in the integral 
representation of Appell and Lauricella functions, 
taking into account the basic sixfold integral given by 
Gavrila and Costescu [3], the full nonrelativistic 
results may be expressed in terms of these higher 
transcendental functions. More specific, the two 
photon bound-bound transitions involve Appell 

functions, while the more complicated case of bound-
continuum transitions involves Lauricella functions 

),,,;;,,,; 43214321( zzzzcbbbbaDF , which could not be 
numerically evaluated until now, moreover integrated. 
 In the nonrelativistic limit of the second order 
S-matrix element, from rotational invariance 
considerations, the Compton amplitude M for photon 
scattering on K-shell electrons is: 
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where the invariant scattering amplitudes are: 
=A ϑ )()( 21 Ω−Ω− PP , ))()(( 21 Ω+Ω−= TTE , 

))()(( 21 Ω+Ω−= LLB , )()( 21 Ω+Ω−= SRC , 
)()( 21 Ω+Ω−= RSD        (2) 

with mγω +=Ω 11 , mγω +−=Ω 12 , 2/122 )1( Zαγ −= .  
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 The form factor ϑ fi
rkkie ][ )( 11
→→→

−=  in equation 
(2) is given by the expression [3]: 
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where 
→

∆  is the photon momentum transfer, 

mZαλ = , pi /λν −= , pnp
→→

=  is the electron 

momentum, and ( ) 2
1

22/12
11

12 −−− −= νππ eN . 
 
2. The triply and doubly differential 
cross-sections  
 
In the case of Compton inelastic scattering of 
unpolarized photons by K-shell electrons averaged 
over the initial and summed over the final photon 

polarization vectors 
→→

21 , ss  we get for the triply 
differential cross-section the expression [4]: 
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where 1ω and 2ω are the initial and final photon 
energies respectively, while 0r  stands for the electron 
classical radius. The anglesθ , 'θ ,ϕ  are the angles 
between the final and initial photons, the electron 
momentum and the initial photon momentum, the 
electron momentum and the final photon momentum, 
respectively. The tip of the spectrum corresponds to 

m)1(1max2 γωω −−= . Our invariant amplitudes are: 
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where  
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with phases 0χ and 2χ not depending on the angles. 
The Lauricella functions variables are: 
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Integrating the triply differential cross-section over 
the final electron momentum direction one gets the 
doubly differential cross-section for Compton 
scattering: 
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 Inspecting the relations (1.1) - (1.8) we 
observe that the integral (1.9) requires a double 
integration over a product of two Lauricella functions, 
which include the cumbersome angle dependence 
involved in their arguments. It is quite obvious that is 
not possible to perform any further analytical 
integration but only a numerical one. 
  
3. Numerical evaluation and integration 
of the product of two Lauricella 
functions 
 
The integral representation of Lauricella function is 
(for 0Re >a  and 0)Re( >− ac ): 
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where the integration contour begins from the point 

εi+1 in the upper semiplane of the complex variable 
ρ  and ends in the point εi−1 in the lower semiplane, 
encircling the origin in counter-clockwise sense. 
  Inspecting the parameters of the Lauricella 
functions we need, and comparing with the integral 

representation (2.1) one observes that the relationship 
1+= ac  holds for all these functions. In this case, 

there is no cut between the origin and the point 1 so 
that the integral representation (2.1) becomes: 
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The main difficulty for calculating the Lauricella 
function FD in the integral representation comes from 
its large number of parameters, giving a large variety 
of shapes of the integrand. Many of them are 
pathological, with regions of very fast variations 
combined with slow variation regions. It is very 
challenging for all standard quadrature methods, 
which fail to converge in many situations, or have a 
poor rate of approximation. 
 However, inspecting the shape of the 
integrand, it comes out that the fast variation regions 
are concentrated in the vicinity of the origin, 
producing important truncation errors. Obviously, the 

aρ  term (a being complex) has an oscillating 

behavior with the frequency
π

ρ
2

ln)Im(a
f = , revealing 

a very difficult quadrature  when ρ tends to 0. 
 Figures 1-3 show that the shape of the 
integrand for some important physical situations of 
the Compton scattering theory where they are 
involved. One may observe that both the real and the 
imaginary part of the integrand are highly oscillating, 
so any standard sampling method of the whole 
interval [0, 1] is inadequate. Indeed, the other methods 
for sampling the integrand, with equidistant or Gauss 
points [6,7] will treat equally   the edges of the 
integration domain, not allowing to have a much 
greater number of points in the difficult region. 
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FIG. 1 - Lauricella integrand for Compton scattering 
at 150keV, Z=30, θ=60°  
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FIG. 2 - Lauricella integrand for Compton scattering 
at 661keV, Z=82, θ=0° 
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FIG 3. Sampling points for quadrature  
 
 For accurately evaluating the Lauricella 
functions, we propose a procedure with an increasing 
sampling rate, in a continuous or discontinuous way, 
when approaching the origin, followed by a mid-
point quadrature.  

 We point out that the same difficulty also 
occurs when calculating the integral representations 
of hypergeometric Gauss function );;,(12 zcbaF  and 
Appell function ),;;,;( 21211 zzcbbaF , but with a 
significantly simpler behavior of the denominator, so 
our method may be used for these cases too. 
 A simple yet efficient way for variable 
sampling the interval may be chosen in a linear form 
as: 
 )1( −+=∆ ibaxi             (13) 

where ix∆  is the width of the ith interval, a is the 
width of the first interval (chosen by us between 10-4 
and 10-6) and b results from the upper limit of the 
domain: 
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where N is the number of intervals. 
 The integrand should be evaluated in the 
middle of each of the N intervals 2/)( 1++= kkkm xxx , 

where kx is the beginning of the kth interval 

kikk xxx ∆+= − , with 00 =x , so that the final 
formula for evaluating the Lauricella functions will 
be: 
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 As no previous numerical calculations of the 
Lauricella functions were available for verifying the 
accuracy of our evaluations, we had to find 
recurrence relationships which can be used for this. 
So, we can prove: 
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and also, the following relationships: 

),,,;5;2,2,1,1;4(
4

),,,;4;2,2,1,1;3(
3

),,,;3;2,2,1,1;2(
2

1

),,,;3;2,2,,;2(
2

1

4321
21

4321
21

4321

4321

zzzzFzz

zzzzFzz

zzzzF

zzzzF

D

D

D

D

τνννντ
τ

τνννντ
τ

τνννντ
τ

τνννντ
τ

−++−−−
−

+

−++−−−
−
+

−

−++−−−
−

=

−++−−−
−

(17) 

 A more general relationship, that has a 
nontranscendental term useful for comparison is: 
 

3
4343

1
2121

43213311
31

43213311
21

432133111

43213311
43

432133113

)1()1(

),,,;1;,,,;(

),,,;3;,,1,1;2(
2

),,,;1;,,1,1;(1

),,,;3;1,1,,;2(
2

),,,;1;1,1,,;(1

bb

D

D

D

D

D

zzzzzzzz

zzzzabbbbaF
a

abb

zzzzabbbbaF
a

zz

zzzzabbbbaF
a

b

zzzzabbbbaF
a

zz

zzzzabbbbaF
a

b

−− +−−+−−=

+
−+

−

⎥⎦
⎤++++

+
−

⎢⎣
⎡ ++++

⎥⎦

⎤++++
+

−

⎢⎣
⎡ +++

(18) 

 We found, for the numerical parameters and 
variables provided by the physical context of the 
Compton scattering of X and gamma ray, that these 
recurrence relationships, implying several Lauricella 
functions are  satisfied with errors in the range 10-6-
10-10 %, for a number of intervals, N,  between 50-
500. Further increasing of the number of sampling 
points was not necessary, as the required precision 
was usually obtained at 102-3.102 points. 
 Also, taking in (18) the parameters 

ν−= 11b , ν+= 13b  and τ−= 2a  we obtain the 
following relationships that finally reduce the 
number of Lauricella functions involved in the 
expressions of amplitudes, only four such functions 
being needed. 
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 In Fig. 4 we present the comparison between 
our calculations for the doubly differential cross-
section with the corresponding S-matrix calculations 
of Bergstrom et al [1]. It may be observed a very 
good concordance even for high values of the 
incident photon energies. 
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FIG. 4. Comparison of present results (boxes) with 
the corresponding S-matrix calculations (x) of 
Bergstrom et al [1]. 
 
 The parameters of the physical process give a 
higher oscillating behavior of the Lauricella function 
integrand as the energies of the incident particle 
increase, so we tested the accuracy of our evaluations 
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at some higher values, until 10 MeV, and we found 
that even for this domain the calculus of Lauricella 
functions is accurate. The same problem occurs for 
heavy elements, so it is important to observe the 
good concordance with the S-matrix results even for 
Z=79 (Fig. 5), and energies beyond the X-ray, well 
inside the gamma-ray domain.  
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FIG. 5. Compton doubly differential cross-sections  
for intermediate and high Z values, at 145 keV. One 
may observe that when Z decreases, the Compton 
peak is higher and narrower. 
 
 All these come to prove that a better 
accuracy of the model and the calculus is achieved 
for smaller incident photon energies and lighter 
elements. Indeed, our curves and Bergstrom et al 
curves are practically superposed for the whole X-ray 
spectrum and any Z. 
 
  
4. Conclusions  
 
Starting from the analytical expression of the triply 
differential Compton cross-section [5], we perform  
the integration over the solid angles, implying the 
numerical evaluation of the Lauricella functions.  
 The economy obtained in the evaluation 
time, due to our efficient sampling method, allowed 
us to further integrate the products of the calculated 
Lauricella functions over the solid angle, as the 
calculus of the doubly differential cross section 
requires, and eventually a supplementary integration 
over the spectrum for obtaining the single differential 
cross section. 
 Our method takes into account the full form 
of Lauricella functions, with two of their variables 
depending on the direction of the final electron and 

photon, thus correctly considering the multipoles and 
retardation.  
 The good agreement with the results 
obtained through fundamentally different methods, 
shown in fig. 4, proves once more the validity and 
the applicability of our analytically formulae as well 
as the accuracy of our calculations. We consider that 
our work completely describes the X-ray Compton 
scattering by the K-shell bound electrons. Also, due 
to the accuracy of the evaluation of Lauricella 
functions at much higher energies, the calculus of the 
Compton cross-sections can be extended to hard 
gamma-ray domain. 
 As Hostler proved [8], the Green function for 
Dirac equation with coulombian field may be 
expressed iteratively as a sum of self adjoint 
operators applied to a coulombian Schrodinger 
equation Green function who's parameters are given 
by relativistic kinematics. This leads to similar 
Lauricella and Appell functions in the inelastic and 
elastic scattering amplitudes, respectively, but with 
changed parameters and variables, making possible 
to extend our numerical method to the relativistic 
calculus of the two photon atomic processes. 
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