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Abstract: - This paper studies spectral methods for vehicular traffic flow simulation. According to related 
studies, high-order macroscopic models cannot ensure the anisotropic property of traffic flow. Fortunately, the 
first-order model, i.e., LWR model, satisfies the anisotropic property in single-lane traffic. Although LWR 
model is the simplest macroscopic model, it is still a nonlinear model. For uninterrupted traffic flow, the initial 
and boundary conditions are continuous. The LWR model can be solved by general numerical algorithms. 
However, if interrupted traffic flow of signalized roads in an urban is considered, high-order numerical 
algorithm must be employed to approximate the discontinuous conditions. Besides, a high-order numerical 
algorithm takes more computing time and needs more strict constraints for convergence. If the number of 
simulated roads is huge, it is impossible to provide real-time information and control strategies of traffic flow. 
Spectral method, which is developed in 1970s, is a numerical solution method of partial differential equations. 
The method has the property of infinite differentiable and can be computed rapidly. It is considered as an 
alternative of finite difference method and finite element method. Spectral method employs a given smooth 
function to approximate the unknown equation. Generally, Fourier series、Chebyshev、Legendre、Laguerre 
or Hermite polynomials are considered candidates of smooth functions. Different forms of differential 
equations and conditions should be solved by differential polynomials. In this study, the convergence of the 
smooth function is analysed and compared numerically. Eventually, the suitable method will be suggested to 
simulate traffic flow. 
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1 Introduction 

Traffic congestion generates the interest in 
traffic flow researches. Traffic flow theory [1-19] is 
a new science, which has addressed questions 
related to understanding traffic processes and 
optimising these processes through proper design 
and control. The former questions could be 
described as basic research and the latter as applied 
research. Dynamic traffic management, such as 
ramp metering, congestion tolls, entrance/exit 
control and so on, is an efficient tool to solve traffic 
congestion. Traffic flow model is the fundamental 
theory of dynamic traffic management. There are 
four main modelling methodologies: car-following 
models [1-2], kinetic models [3-13], Boltzmann-like 
models [14-15] and cellular automation (CA) [18-
19]. Microscopic models can describe individual 
behaviors of vehicles well. However, they need a lot 
of computing time and resource. Also, microscopic 
models need suitable assumptions to aggregate the 
individual results to macroscopic phenomena. 
Macroscopic models can be analyzed, but they 
cannot ensure the anisotropic property of traffic 
flow except the first order model [16-17]. The first 

order model is presented by Lighthill, Whitham and 
Richards in 1955 [3-4]. With different boundary 
conditions, the LWR model is good enough to 
describe traffic flow under different control 
strategies. Therefore, LWR model with different 
boundary conditions is considered in this study.  

Traffic flow theory provides the information of 
speed, density and volume on a link. When planning, 
designing, operating and optimizing a traffic 
network, we have to simulate traffic flow on all 
links included in a network. Therefore, a robust and 
efficient numerical is needed while planning and 
implementing signal control strategies especially 
on-line control. Spectral methods involve seeking 
the solution to a differential equation in terms of a 
series of known, smooth functions. They have 
recently emerged as a viable alternative to finite 
difference and finite element methods for numerical 
solution of partial differential equations [20-25]. 
The key recent advance was the development of 
transform methods for the efficient implementation 
of spectral equations. Mostly, Fourier series, 
Chebyshev, Legendre, Laguerre, Hermite 
polynomials are considered as possible smooth 
functions for spectral method. In this study, analysis 
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and numerical comparison are presented. According 
to the result, Fourier series is the most proper one 
for simulating traffic flow problem, because the 
boundary conditions may be periodic and non-
periodic. Also, the convergence of Fourier series is 
the best among the candidate polynomials. The 
remaining content of this study is given as follows. 
Sec. 2 briefly reviews dynamic traffic flow models. 
Sec. 3 shows the spectral methods and smooth 
functions. Sec. 4 presents the computational method 
and numerical results. Finally, Sec. 5 draws the 
conclusion. 
 
 
2 Historical Evolution of Traffic Flow 

Models 
In this section, methodologies of dynamic 

traffic flow researches are reviewed briefly. Firstly, 
car-following theory is mentioned. Car-following 
theory is based on the dependency among vehicles 
traveling a platoon. It is microscopic dynamic model. 
The model, which represents the behavior of 
individual cars as they fight for survival and a place 
in a line of cars moving along a highway, was first 
considered by Reuschel [1] and Pipes [2] in the 
early 1950s. Every driver who finds himself in a 
single-lane traffic situation is assumed to react 
mainly to a stimulus from his immediate 
environment. The stimulus was assumed to be a 
function of the position of the car, the position of its 
neighbors, and the time-derivatives of these 
positions. It was conjectured, and verified 
experimentally, that the strongest stimulus was the 
relative speed of the car with respect to the car in 
front. 

Secondly, macroscopic dynamic traffic flow 
models are discussed. In 1955, Lighthill, Whitham 
[3] and Richards [4] firstly proposed the LWR 
model, which is a continuity equation. The model, 
which is given as Eq. (1), is derived from the 
conservation of vehicle numbers.  

0=⋅∇+∂∂ Qtk ,                                        (1) 

where k is density and Q is flow. u is introduced as 
speed and the relation among the three variables is 
Q = ku. The assumption of LWR model is that speed 
changes instantaneously as density changes, i.e., 
speed is only a function of density. It is certainly not 
valid in some traffic flow situations. To overcome 
the steady state assumption of velocity, Payne [5] 
used a motion equation to obtain time variant speed 
and proposed a second order model, which was 

named as PW model [5-7]. PW model is given by 
coupling Eqs (1) and (2).  

( ) ( ) ( )( )ukukP
k

uu
t
u

ee −+⋅∇−=⋅∇+
∂
∂

τ
11 ,      (2) 

where Pe(k) is the equilibrium traffic pressure, ue(k) 
is the equilibrium speed and τ  is the relaxation 
time. Pe(k) and ue(k) are functions of density. The 
term ( ) kkPe⋅∇−  is an anticipation term, which 
takes it into account that drivers beware the 
preceding traffic condition. However, this kind of 
models has a lot of arguments, so families of gas-
kinetic models [8-13] are presented. The systematic 
partial differential equations can be derived from the 
macroscopic traffic phenomena or the Boltzmann 
equation [8-13]. The systematic model, which 
includes continuity, motion and variance equations, 
is coupling by Eqs (1) ~ (3).  

( ) ( ) ( ) ( )( ) ( ) ( )θκµ
θθ

τ
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θθ
θ
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where θ  is speed variance, μ  and κ  are 
coefficients. θe is introduced as the equilibrium 
variance, which only depends on density. The 
systematic model describes the traffic situations that 
the variation of density, velocity and variance are 
significant. Three results are observed from the 
numerical simulations: (1) The section of high 
density induces low speed and small speed variance; 
(2) The section of low density induces high speed 
and large speed variance; (3) The largest speed 
variance takes place at the highest speed behind a 
platoon.  

Vehicular Boltzmann equation is a further 
modeling methodology. This kind of model is first 
employed to describe traffic flow by Prigogine, 
Herman and their colleagues [14] and is referred to 
the Boltzmann-like model. Prigogine described a 
traffic fluid with a probability density for the 
velocity (v) of an individual car, ( )tvxf ,, , which 
may vary with a function of time t and the 
coordinate x along the highway. This density is 
assumed to satisfy the equation 

nteractionirelaxation t
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t
f

x
fv
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f
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∂
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∂
∂

=
∂
∂

+
∂
∂ .                (4) 

The first term of the right-hand element of Eq. 
(4) stems from the fraction that ( )tvxf ,,  differs 
from some desired velocity distribution ( )vf 0 . The 
second term describes that a fast car will slow down 
owing to the influence of a slow car. The interaction 

Proceedings of the 8th WSEAS International Conference on APPLIED MATHEMATICS, Tenerife, Spain, December 16-18, 2005 (pp263-271)



term has been criticized. It has been argued that the 
collision term is only valid in the situation, which 
describes the incoming vehicle passing each single 
car in the queue independently. Therefore, Paveri-
Fontana [15] proposed an improved model to 
overcome the shortcoming of Prigogine’s approach. 
He generalized the phase-plane distribution as 
( )tvvxf ,,,~ 0 , where 0v  is the individual desired 

velocity. ( ) ( )∫= 00 ,,,~,, dvtvvxftvxf . Nevertheless, 
his model still considered that the maneuver on the 
lanes of a multilane road is the same and his model 
does not take queuing effects into account. 
Transitory and stationary solutions and numerical 
simulations are proposed by researches.  

A more recent addition to the development of 
vehicular traffic flow theory is cellular automation 
(CA) or particle hopping method [18-19]. In CA, a 
road is represented as a string of cells, which are 
either empty or occupied by exactly one vehicle. 
Movement takes place by hopping between cells. 
All vehicles execute in parallel the following steps:  
(1) Let g (gap) equal the number of empty sites 

ahead. 
(2) If u > g (too fast), then slow down to u = g (rule 

1); otherwise if u<g (enough headway) and 
mazuu < , then accelerate by one u=u+1 (rule 2). 

(3) Randomization: if after the above steps the 
velocity is larger than zero (u > 0), then, with 
probability p, reduce u by one (rule 3).  

(4) Vehicle propagation: Each vehicle moves u sites 
ahead (rule 4). 
We can make some conclusions and comments 

of traffic flow researches herein. As the LWR-like, 
PW or gas-kinetic models are employed, one has to 
give externally the relation between speed, flow, 
density and speed variance [3-15]. Microscopic 
simulation models usually been adopted for the 
simulation of relatively small or simple systems and 
macroscopic simulation can be used to simulated the 
large network or complex system. Numerous runs of 
microscopic simulations may be necessary to 
achieve such a long time. This limitation makes 
applications of these simulation models problematic 
for the provision of real-time traffic information. 
Higher order macroscopic models should be 
modeled carefully or unreasonable situation will be 
induced, such as wrong way traveling flow [16-17]. 
In addition, the higher order models also need 
numerous computing with convergent problems. 
Boltzmann-like equation, which is the mesoscopic 
model, brilliant though it is, has not attracted many 

followers, probably because of its exacting 
requirements in mathematical sophistication. 
Consequently, LWR model, which is a simple and 
sufficient model [16], is suggested to simulate 
dynamic traffic flow in this study. 
 
 
3 Spectral Method and Smooth 

Functions 
Generally, finite different and finite element 

methods are most used numerical methods for 
solving partial differential equation. Finite 
difference methods (FDM) approximate the 
unknown function by a sequence of low-order 
overlapping polynomials, which interpolate the 
unknown function at a set of grid points. The 
derivative of the local interpolant is used to 
approximate the derivative of the unknown function. 
The result takes the form of a weighted sum of the 
values of the unknown function at the interpolation 
points. Finite element methods (FEM) chop the 
space into a number of sub-intervals and choose 
basis functions, which are polynomials of fixed 
degree, which are non-zero only over a couple of 
sub-intervals. Spectral methods use global basis 
functions of high order degree, which are non-zero, 
except at isolate points, over the entire 
computational domain [20-26].  

Spectral methods are benefit in two ways. First, 
the interval between two grid points becomes 
smaller would cause the error to rapidly decrease 
even if the order of the method were fixed. The 
error ])/1[( NNO≈ , where N is the number of grid 
points in a given interval. Although the order of 
FDM and FEM are not fixed, the error of both 
methods depends on the order of polynomial rather 
than the number of grid points. Spectral methods 
converge exponentially. The second advantage is 
that the high accuracy of spectral methods is 
memory minimizing. Problems that require high 
resolution can often be done satisfactorily by 
spectral methods when a three-dimensional second 
order FDM code would fail because the need for 
eight or ten times as many grid points would exceed 
the core memory of the available computer. 
Therefore, spectral methods are introduced to traffic 
flow simulation in this study.  

The history of spectral methods can be dated 
back to 1822 in the days of the French physician and 
mathematician Jean-Baptiste-Joseph Fourier (1768-
1830). Fourier discovered that any periodic function 
fulfilling certain simple conditions could be 
represented as a finite series. The foundation for 
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using spectral methods was laid in 1965 when 
Cooley and Tukey presented the fast Fourier 
transform (FFT) algorithm. This turned the spectral 
methods into a competitive alternative to existing 
numerical methods, e.g. finite-difference methods, 
since the computational effort could be reduced 
significantly. Therefore, the popularity of spectral 
methods used for solving partial differential 
equations increased in the early 1970s. Five most 
popular smooth polynomials are analyzed and 
compared in this section [20, 22, 25-26]. 

The first one is Chebyshev polynomial which is 
denoted by Tn(x). Let the unknown function is k(x) 
and a degree n approximation of k(x) is given by 
kn(x). Then,  

( ) ( )∑
=

=
n

j
j

c
jn xTaxk

0

,                                           (5) 

where  
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c

a j
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c
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−
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2

,                           (6) 

⎩
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≠
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j
j

c j                                                (7) 

Chebyshev polynomial, Tn(x), can be solved by the 
following recursive relations. 

( ) ( ) 10cos0 ==xT ,                                                (8) 

( ) ( )( ) xxxT == −1
1 coscos ,                                    (9) 

… 

( ) ( ) ( )xTxxTxT nnn 11 2 −+ −= .                               (10) 

The Legendre polynomial is denoted by Pn(x). 
The degree n approximation is  

( ) ( )∑
=

=
n

j
j

le
jn xPaxk

0

,                                        (11) 

where 

( ) ( )dxxPxkja j
le
j ∫−

+
=

1

12
12

.                          (12) 

Legendre polynomial, Pn(x), can be solved by the 
following recursive relations. 

( ) 10 =xP ,                                                             (13) 

( ) xxP =1 ,                                                             (14) 

… 

( ) ( ) ( ) ( )[ ]xnPxxPn
n

xP nnn 11 12
1

1
−+ −+

+
= .       (15) 

The Laguerre polynomial is denoted by Ln(x). 
The degree n approximation is  

( ) ( ) ( )∑
=

=
n

j
j

la
jn xLtaxk

0

,                                   (16) 

where 

( ) ( )dxxLxkxe
j

a j
xla

j ∫
∞ −

+
=

012
1

.                 (17) 

Laguerre polynomial, Ln(x), can be solved by the 
following recursive relations. 

( ) 10 =xL ,                                                             (18) 

( ) xxL −= 11 ,                                                       (19) 

… 

( ) ( ) ( ) ( )[ ]xLxnxnL
n

xL nnn −+−
+

= −+ 12
1

1
11 .  (20) 

The Hermite polynomial is denoted by Hn(x). 
The degree n approximation is  

( ) ( )∑
=

=
n

j
j

h
jn xHaxk

0

,                                       (21) 

where 

( ) ( )dxxPxke
j

a j
x

j
h
j ∫−

−=
1

1

2

!2
1
π

,                 (22) 

Hermite polynomial, Hn(x), can be solved by the 
following recursive relations. 

( ) 10 =xH ,                                                            (23) 

( ) xxH 21 = ,                                                         (24) 

… 

( ) ( ) ( )xnHxxHxH nnn 11 22 −+ −= .                      (25) 

The last one is Fourier series, which is given as 

( ) ( ) ( )∑∑
==

++=
n

j
n

n

j
nn jxbjxaaxk

11
0 sincos ,      (26) 

where 

( )∫−=
π

ππ
dxxka

2
1

0 ,                                       (27) 
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( ) ( )∫−=
π

ππ
dxjxxka j cos

2
1

,                          (28) 

( ) ( )∫−=
π

ππ
dxjxxkb j sin

2
1 .                        (29) 

Definition 1. (Convergence) 
Let ( )xkn  is the approximation function of k(x). 

When ∞→n , [ ]Lx ,0∈∀ , ( )xkn  satisfies 

( ) ( ) 0→− xkxk n ,                                         (30) 

then ( )xkn  is said to be convergent to k(x)。 

Riemann-Lebesgue Lemma 
If ( )xf  is integrable on [ ]ππ ,− , then 

( ) ( ) 0sinlim =∫−∞→
dxtxxf

t

π

π
,                               (31) 

and 

( ) ( ) 0coslim =∫−∞→
dxtxxf

t

π

π
.                              (32) 

Before analyzing of functions, the Fourier series 
is rewritten as 

( ) ∑
=

=
n

j

ijxf
jn eaxk

0
,                                            (33) 

where 

( )dxxkea ijxf
j ∫ −=

π

π
2

02
1

.                                 (34) 

Substituting the approximation of each 
polynomials into Eq. (30), we have 

( ) ( ) ( )∑
∞

+=

=−=
1nj

poly
jnn xFaxkxkE ,            (35) 

where poly represents different coefficients of 
polynomials, i.e., poly = f is Fourier series, poly = c 
is Chebyshev polynomial, poly = le is Legendre 
polynomial, poly = la is Laguerre polynomial and 
poly = h is Hermite polynomial. F(x) represents 
different polynomials, i.e., F(x) = ijxe  is Fourier 
series, F(x) = T(x) is Chebyshev polynomial, F(x) = 
P(x) is Legendre polynomial, F(x) = L(x) is 
Laguerre polynomial and F(x) = H(x) is Hermite 
polynomial. The analysis starts with Fourier series. 
According to Eqs (33) and (35), we have 

( ) ( ) ( )f
n

nj

ijxf
jnn aOeaxkxkE ≈=−= ∑

∞

+= 1
. (36) 

If ( )xk  is d-times differentiable and ( )( )xk d  is 
integrable, then we differentiate Eq.(34) d times and 
have 

( )
( )( )∫ −=

π

π
2

02
1 dxexk
in

a inxd
d

f
n .                    (37) 

Since ( )( )xk d  is integrable, the Riemann-
Lebesgue Lemma tells us 

d
f

n na 1<< ,                                                   (38) 

that is, ( )d
n nOE 1=  when ∞→n . For example, if 

( )xk  is a second order differentiable function, then 
( )21 nOEn = . 

The analysis of Chebyshev polynomial is the 
same as Fourier series. According to the same 
procedure, we have 

d
c
n na 1<< ,                                                     (39) 

that is, when ∞→n , ( )d
n nOE 1= . 

From Davis’s study in 1975, the convergence 
of Legendre polynomial is worse than Chebyshev 
polynomial. When ∞→n , a ( )nπ2  difference 
exists, i.e.,  

( )πnna d
le
n 21≈ .                                           (40) 

Therefore, ( )2/11 −= d
n nOE , when ∞→n . Figure 1 

compares Chebyshev and Legendre coefficients. 
Both sets asymptote to parallel straight lines, but 
Chebyshev coefficients are smaller. The 
convergence of Legendre polynomial is just worse 
than Chebyshev polynomial.  
 

 
Figure 1. Convergent speed of Chebyshev and 

Legendre polynomial 
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The convergence of Laguerre polynomial 
depends on the unknown function. Here, sinx is 
considered as an example. 

( ) ( ) ( )xLnx n
n

n ⎥⎦
⎤

⎢⎣
⎡ += ∑

∞

=
+ 1

4
cos

2
1sin

0
21

π
.         (41) 

Therefore, when ∞→n  

( ) ⎥⎦
⎤

⎢⎣
⎡ −≈ −− ππ

π 4
12cos1 41412 nxxexL x

n .   (42) 

If xn >> , then  

( ) 412

2

2 nx
eE

n

x

n ≈ .                                            (43) 

That means nE  is small only when xn 44.1≥ . If the 
unknown function is periodic, then xn 44.1≥  must 
be satisfied in one period so as to achieve acceptable 
accuracy. Hence, to achieve the same accuracy, the 
Laguerre expansions require many more terms than 
Chebyshev and Legendre expansions.  

Hermite polynomial can be analyzed as the 
same way of Laguerre polynomial. Also, the 
expansion of sinx is considered as an example.  

( ) ( )xH
n

x n
n

n 12
0

12 !122
1sin +

∞

=
+∑ +

= .                   (44) 

When ∞→n , 

( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ −+≈ πnxne

n
nxE x

n 2
112cos

!2
! 22 .      (45) 

nE  will close to zero rapidly at x only if 
xxn log2≥ ,. The result is very bad. To obtain high 

accuracy, Laguerre and Hermite polynomials 
require too many terms. Consequently, the two 
polynomials are not suggested to be the smooth 
function of spectral method in this study.  

Therefore, Fourier series and Chebyshev 
polynomials are suggested to be the smooth 
functions of spectral methods herein. Both Fourier 
series and Chebyshev polynomials can be computed 
by Fast Foutier Transform (FFT). Firstly, we 
compare the numerical results of Fourier series and 
Chebyshev polynomial. If the space is discretized by 
uniform grid, Fourier series performs accurate 
results and repaid computation. On the other hand, 
approximation of Chebyshev polynomial produces 
oscillations. To improve the result, Chebyshev grid 
should be considered. Figure 2 illustrates the 

comparison of unispaced and Chebyshev points. 
Thus, using Chebyshev polynomial needs some pre-
processes and pre-analyzes so as to design 
Chebyshev grid. The application of Fourier series is 
more convenient than Chebyshev polynomial. 

 

 
(a)                                      (b)  

Figure 2. Comparison of (a) equispaced and (b) 
Chebyshev points for degree N intepolation of 
u(x) =1/(1+16x2).  

 
 
4 Spectral Method for Traffic Flow 

The method begins by considering Eq. (1) with 
the Greenshield model, which is the most used 
speed-density relation ( ) ( )jf kkuku −= 1 . fu  is 

free flow speed and jk  is jam density. Both of them 
are constants and obtained by calibrating of 
empirical data. Then Q(k) = ku(k) = ( )jf kkku 2− . 
Equation (1) is rewritten as 

( )kNLktk +=∂∂ ,                             (46) 

where L is a linear operator and is equal to 
( )xu f ∂∂− . N(k) includes the nonlinearly and non-

constant coefficient terms, which is equal to 
( )( )xkkku jf ∂∂2 . By applying Fourier transform, 

Eq.(33) reduce to a ordinary differential equation 

( ) ( )kNkdtkd ˆˆˆ += ωα ,                     (47) 

where k̂  and N̂ are Fourier transform of k(x) and 
N(k), respectively. ( ) fuiωωα −= . Once the PDE 
is reduced to ODE, Eq.(47) can be solved by Runge-
Kutta method.  

Five cases with continuous and discontinuous 
initial and boundary conditions are simulated herein. 
A 1.5 km highway and 3 minutes time period are 
considered. Free flow speed uf is 90 km/hour (kph) 
and jam density kj is 120 vehicle/km. The first case 
describes platoon formation traffic. The inflow 
boundary condition is given as a constant, which is a 

Proceedings of the 8th WSEAS International Conference on APPLIED MATHEMATICS, Tenerife, Spain, December 16-18, 2005 (pp263-271)



jam situation. The downstream boundary is a 
Neumann condition, which allows vehicles leaving 
the highway section freely. Besides, the initial 
condition describes a gradual increasing traffic flow. 
Equation (48) gives the initial and boundary 
conditions. 

Figure 3 illustrates the simulated result. Since 
the input boundary always keeps at jam density, 
platoon forms gradually and the highway becomes 
congestion. Case 2 is a platoon dissipative traffic. 
The entrance flow is assumed to be a moderate 
density and the initial condition is a high-low traffic 
situation. It may occur on a highway after an 
incident has just been removed. Equation (49) gives 
the initial condition and boundary conditions. 
Therefore, the pre-existing platoon dissipates as 
time goes by. Finally, the traffic flow becomes 
smooth and stable. The result is shown in Fig. 4. 
Traffic flow with a periodic initial condition is 
simulated in case 3. Assume the input flow is 
constant, which is smaller than the jam density, i.e., 
the simulated traffic flow is under free flow 
situation. Equation (50) gives the initial and 
boundary conditions. Figure 5 illustrates the result. 
Also, the platoon moves forward and dissipates and 
finally traffic density is equal to the input density. 
The traffic flow becomes stable. According to 
previous three cases, the spectral method can solve 
traffic flow problems with continuous conditions 
well.  
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Figure 3. (a) boundary condition, (b) initial 

condition and (c) simulated result of case 1. 
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Figure 4. (a) boundary condition, (b) initial 

condition and (c) simulated result of case 2. 
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Figure 5. (a) boundary condition, (b) initial 

condition and (c) simulated result of case 3. 
 
Cases 4 and 5 involve with discontinuous 

initial and boundary conditions. Figures 6 and 7 
illustrate the simulated results, respectively. 
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Discontinuous condition occurs while shock wave 
appears or at signalized intersections. Equation (51) 
is the initial and boundary conditions of case 3. The 
case describes dissipation of shock wave. The 
situation may occur behind a red-light signalized 
intersection. Oscillation of solution caused by 
discontinuous initial condition. Fortunately, it 
disappears with time. Equation (52) gives a more 
realistic condition. It simulates one cycle length of 
signal, which starts with red light. When the signal 
is red at the entrance of the road, the pre-existing 
platoon in the road dissipates. As the signal turns 
green, platoon moves forward with jam density. In 
this case, the waiting queue of vehicles is assumed 
to release during the green light. Oscillation occurs 
severely in this case. In one signal cycle, the 
oscillation won’t cause divergence of solution. 
However, if two or more cycles are considered, it 
diverges. Therefore, post-processes [27-28] must be 
considered appropriately so as to smooth out the 
oscillation while applying spectral methods to 
interrupted traffic flow.  
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Figure 6. (a) boundary condition, (b) initial 

condition and (c) simulated result of case 4. 
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Figure 7. (a) boundary condition, (b) initial 

condition and (c) simulated result of case 5. 
 
 

4 Conclusions 
In this paper, the spectral method is applied to 

simulate traffic flow simulation successfully. Five 
smooth functions are analyzed and compared. 
Fourier series is considered as the best one. 
Continuous and discontinuous conditions are 
simulated. The spectral method performs well with 
continuous condition under congestion and 
noncongestion traffic situation. However, oscillation 
occurs in discontinuous problems. If the problem is 
simple, the oscillation is small and negligible for 
traffic flow simulation. If the problem is complicate, 
such as traffic flow behind a signalized intersection, 
the discontinuity is periodic. Oscillation of solution 
will propagate and the solution diverges. Tadmor 
[27-28] develops spectral viscosity method and 
shock capturing method to find out the location of 
discontinuity then approximate the discontinuity by 
Gegenbauser reconstruction method. The method 
not only provides accurate approximation but also 
converges rapidly. This part must be considered in 
further work.  
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