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Abstract: We consider a dynamical system determined by a finite family of smooth vector fields. By using vari-
ational techniques, we obtain the equations of motion and the corresponding normal curves. We approach the
problem as the sub-Riemannian geodesic problem on a step-2 nilpotent Lie group and present a detailed study for
distributions of vector fields of order two and three, which lead to orthogonal Lie groups of dimensions three and
six respectively. For the later case we compute the unit sub-Riemannian sphere and the wave front.
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1 Introduction

Nonlinear dynamical systems defined by means of fi-
nite families of vector fields have been studied in both
the theory of dynamical systems (e.g. [1], [2]), and
the differential geometric control theory, see for in-
stance [3] and [4]. More recently has been shown
that systems defined by a distribution of smooth vector
fields determine intrinsically a geometric structure on
the underlying manifold that goes under the name of
singular, sub-Riemannian or Carnot-Caratheodory ge-
ometry, and provide a natural framework for studying
certain problems in physics, see for instance [5], [6]
and [7]. Some general aspects of the sub-Riemannian
geometry for distributions of arbitrary degree on step-
2 nilpotent Lie groups are discussed in our forthcom-
ing paper [8].

We study in this paper, a nonlinear dynamical sys-
tem given by means of a distribution∆ of smooth vec-
tor fields{X1, . . . , Xn}. The flow of such a system
is given by the solution of the nonlinear differential
equation

q̇ = u1X1(q) + · · ·+ unXn(q), (1)

whereu = (u1, . . . , un) is a vector valued measurable
and bounded function and the state variableq belongs
to certain smooth manifoldM. When consideringu
as the control parameter one can think of (1) as acon-
trolled dynamics onM, and use the control theoretic
techniques for deriving the properties of the flow. In
contrast, we approach the problem from the point of

view of variational calculus with non-holonomic con-
straints.

Apart from this introduction the paper contains
three sections, in section 2 we derive the equations
of motion in the standard way, i.e. through Euler-
Lagrange formalism. In section 3 we present first a
general idea about a hierarchy of dynamical systems
determined by means of non-holonomic constraints
defined by families of non-integrable 1-forms. These
set of ideas were presented by R.W Brockett and L.
Dai in [9]. We shall pursue the study of such hi-
erarchy elsewhere. We then continue establishing a
relationship of the dynamical system with the sub-
Riemannian geodesic problem for the case of step-2
nilpotent Lie groups. In section 4 we integrate explic-
itly the extremal equations for the normal geodesics
and discuss in detail some low dimensional cases, pro-
viding, in particular, a parametrization of the sub-
Riemannian exponential mapping. At the end, we
consider the sub-Riemannian unit sphere and the wave
fronts for the(3, 6) case, some commented pictures
for level surfaces of these geometric objects are pre-
sented.

2 The Equations of Motion

Assume thatM = IRn × IR with coordinatesq =
(x, y), and assume also that there is a sufficiently
smooth vector valued functionξ = (ξ1, . . . , ξn) such
the dynamical system is written as follows
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ẋ = u, (2)

ẏ = 〈u, ξ〉. (3)

equation (1) directly implies

Xi =
∂

∂xi
+ ξi

∂

∂y
. i = 1, . . . , n

We consider the distribution∆ = {X1, . . . , Xn}. It
is well known that∆ together with all its Lie brackets
generate a Lie algebra that we shall denote byg.

If ξ is analytic then it is given by its Taylor series
expansion around the origin as follows,

ξj(x) =
∑
ν>0

1
ν!

∂νξj

∂xν

∣∣∣∣
x=0

xν

whereν is the multi-index(i1, . . . , in), with nonneg-
ative entries,ν! = i1!i2! · · · in!, xν = xi1

1 · · ·xin
n , and

∂ν

∂xν
=

∂i1

∂xi1

· · · ∂in

∂xin

The non-zero Lie brackets

Xij := [Xi, Xj ] = Fij∂y, i 6= j

determine a family of analytic functionsFij .
Let G be the simply connected Lie group associ-

ated with the Lie algebrag, in such a way that theXi

are left invariant vector fields. For eachq ∈ G one
defines on each plane∆(q) = span{X1, . . . , Xn} a
smoothly varying inner product〈·, ·〉∆(q) by declaring
the vectors{Xi(q)} orthonormal. An absolutely con-
tinuous curveq : [0, tq] → G, is said to behorizontal,
providedq̇(t) ∈ ∆(q), almost everywhere.

We shall consider the variational problem onG
consisting on the minimization of the kinetic energy
action:

S0 =
1
2

∫
‖q̇(t)‖2 dt, (4)

in the class of horizontal curves.
As customary, the standard variational method

consists in the study of the Lagrangian

L =
λ0

2
‖q̇(t)‖2 + λ(ẏ − 〈ξ, ẋ〉) (5)

The case for whichλ0 = 0 is usually called the abnor-
mal or singular case. Forλ0 6= 0, we get the normal
case for which we can setλ0 = 1. An easy but lengthy
calculation gives the following

Proposition 2.1 The Euler-Lagrange equations for
the normal extremals are

ẍ = λF ẋ, ẏ = 〈ξ, ẋ〉 λ̇ = 0, (6)

whereas the abnormal extrema satisfy

Fẋ = 0.

It is evident that in the normal case the Lagrange pa-
rametersλi are constants of motion, and for the even
dimensional case there are no abnormal extremals.

3 The sub-Riemannian geodesic
problem

The Lie algebra obtained from bracketing the distri-
bution ∆ is in general infinite dimensional and it is
determined by the analyticity of functionξ. In this
work, we consider finite expansions around the ori-
gin, approach that fits into the hierarchy introduced
by R. Brockett and L. Dai in [9], for analyzing the
nonlinear effects of mechanical systems. In the afore-
mentioned reference, the authors consider polynomial
vector fields, which can be seen, as finite Taylor series
approximation of analytic vector fields, through par-
ticular examples they study the hierarchy and call the
subsysteṁx = u the “level” 0. The higher levels of
the hierarchy essentially correspond to the powers in
the truncated Taylor series.

We shall pursue the study of such hierarchy and
its implications in both dynamical systems and sub-
Riemannian geometry elsewhere. Here, we want to
consider in detail the first level only, and to show how
this problem can be solved using step-2 nilpotent Lie
algebras. For the first level case, the polynomialsξ1

i
are linear and we can select as the family of non in-
tegrable forms{xi dxj}, for i < j. There are exactly
n(n− 1)/2 of these forms.

Similarly, we could add complete differentials
and obtain the more symmetrical choice{xi dxj −
xj dxi}. We select for this work this last choice, since
the corresponding vector fields turn out to be the left
invariant vector fields of the Lie group associated to
the Lie algebra resulting from∆.

At this level, trigonometric functions are suffi-
cient to express the solutions of the extremal problem.
Higher levels are much more complicated in a gen-
eral approach and only some particular cases can be
solved, for which elliptic and hyperelliptic functions
arise in certain settings, see for instance [9], [6] and
[7].

In what follows we shall present the general set-
ting, let G be a step-2 nilpotent Lie group of dimen-
sionn(n+1)/2, and let∆ = {X1, . . . , Xn} be a rank
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n, bracket generating and left invariant distribution on
G. We assume that{X1, . . . , Xn} is a nilpotent ba-
sis for∆, with order of nilpotency one, that is to say,
adk

Xi
(Xj) = 0, for all k > 1. Furthermore, we

assume thatX1, . . . , Xn together with the non-zero
Lie brackets

Xij := [Xi, Xj ], 1 ≤ i < j = 2, . . . , n, (7)

determine a basis of left invariant vector fields for the
Lie algebrag of the groupG. The Chow-Rashevskii’s
theorem guarantees that any two elementsgi, gf ∈ G
can be connected by an horizontal curve, i.e., an
arc-length parametrized absolutely continuous curve
g : [0, Tg] → G satisfying g(0) = gi, g(Tg) =
gf , and ġ(t) ∈ ∆(g), a.e.. The class of horizontal
curves shall be denoted byH.

As mentioned in the introduction, a sub-
Riemannian structure on the groupG is naturally
defined by declaring the vectorsX1(g), . . . , Xn(g)
orthonormal, in order to define an smooth vary-
ing inner product〈·, ·〉g on each plane∆(g) =
span{X1(g), . . . , Xn(g)}. The sub-Riemannian
geodesic problemconsists of the minimization of the
length functional

`(g) =
∫ Tg

0
‖ġ(t)‖g dt,

on the classH. Incidentally the sub-Riemannian dis-
tance

d(gi, gf ) = inf
g∈H

{`(g) | g(0) = gi, g(Tg) = gf}

is well defined and finite. It reduces the amount of cal-
culations the consideration of the functional of energy

E(g) =
∫ Tg

0
‖ġ(t)‖2

g dt,

instead of the functional̀, both variational problems
are equivalent. Furthermore the orthonormality of the
vector fields implies

‖ġ‖2
g = 〈u1X1(g) + · · ·+ unXn(g),

u1X1(g) + · · ·+ unXn(g)〉
= u2

1 + · · ·+ u2
n = 1.

At the level of the cotangent bundleT ∗G the vari-
ational problem can be tackled in a coordinate-free
fashion, see [8]. However for the purpose of writing

down the trajectories in the base manifold it is neces-
sary to select coordinates. We shall consider coordi-
nates given by pairsg = (x, z) ∈ IRn × son. In these
coordinates the nonholonomic constraints

ġ(t) =
n∑

i=1

ui Xi(g)

yield the following expression for the vector fields

Xi =
∂

∂xi
+

∑
j 6=i

xj
∂

∂zij
,

furthermore, the skew-symmetric matrixz is subject
to

żij = ẋi xj − ẋj xi. (8)

The problem’s LagrangianL takes the form

λ0
1
2

n∑
i=1

ẋ2
i +

∑
i<j

λij (żij − ẋi xj + ẋj xi).

This variational problem is known in the literature as
theGaveau Brockett problem, see [5]. Two situations
can occur. Eitherλ0 = 0, which leads to thesingular
or abnormalcase. The second situation corresponds
to λ0 6= 0, the so callednormalcase. In this last case
we can setλ0 = 1, without loss of generality. In this
problem, however, the second case contains the first,
and therefore we will consider here only the normal
extremals.

Let Λ = (λij) the skew-symmetric matrix whose
entries are the Lagrange multipliers. A direct calcula-
tion yields

Proposition 3.1 The Euler-Lagrange equations for
theL are written as follows

u̇ = Λ u, (9)

Λ̇ = 0 (10)

The above equations lead us to the conclusion that
theλij are constants of motion and that

d

dt
(ẋ− Λx) = 0,

we obtain therefore that the initial velocity compo-
nents ẋ − Λx = ẋ0 constitute a set ofn con-
stants of motion. Then initial conditionsuT (0) =
(u1(0), . . . , un(0)), together with then(n−1)/2 con-
stantsλij , i < j provide a complete set of integrals
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of motion for the system, that guarantee the integra-
bility of the system by quadratures, in conclusion the
integral curves are given by

u(t) = exp(tΛ) u(0).

Since Λ is a constant matrix, we can explic-
itly calculate the solutions by means of the classical
Lagrange-Sylvester theorem. Recall that the rank of
Λ is always an even number, that the nonzero eigen-
values are purely imaginary and appear in± pairs,
and thatΛ can always be block-diagonalized. For
simp[licity, for the remaining of the paper we shall
take the following

Assumption. For n even we shall assume
thatΛ is a nonsingular skew-symmetricn×
n constant matrix having all itsn/2 eigen-
values different Forn odd we shall assume
that Λ has only one eigenvalue equal to
zero, and that the other non-zero eigenval-
ues are all different.

It should be mentioned that degenerated cases are im-
portant and can be studied by standard limit proce-
dures. In any dimensionσ shall denote the spectrum
of Λ, andπ shall denote its characteristic polynomial.
Eachµk ∈ σ determines its corresponding Hermitian
projector

πk(Λ) =
1

π′(µk)

∏
µj 6=µk

(Λ− Iµj).

In the odd dimension, the projectorπ0(Λ) correspond-
ing to the eigenvalue0 writes as follows

π0(Λ) =
1

π′(0)

∏
µj∈(σ−{0})

(Λ− Iµj).

The Lagrange-Sylvester formula yields

exp(tΛ) =
∑
µk∈σ

etµkπk(Λ), and

exp(tΛ) =
∑

µk∈(σ−{0})

etµkπk(Λ) + π0(Λ),

for n even and odd respectively.
We shall derive now explicit formulæ for the sub-

Riemannian geodesics of the system in terms of the
formulas foru andΛ of proposition 3.1.

We shall now assume that(x, z) ∈ IRn × son

is a geodesic arc defined in certain interval[0, T ],
(with x a column vector), and with initial conditions

(x(0), z(0)) = (0,0). We shall assume also that
(x, z) is the projection of a normal extremal(u, Λ)
with Λ a constant skew-symmetric matrix satisfying
the assumption written above, and we shall denote
u(0) = u0. We have that

x =
∑
µk∈σ

1
µk

(eµkt − 1)πk(Λ)u0, and

x =
∑

µk∈(σ−{0})

1
µk

(eµkt − 1)πk(Λ)u0

+tπ0(Λ)u0,

for n even and odd respectively.

3.1 Low dimensional cases

We now specialize the results to the casesn = 2 and
n = 3. In both cases we assume, as before, that(x, z)
is a geodesic arc, with initial point(0,0).

(2,3)-Case. The Heisenberg algebra.This case cor-
responds ton = 2, and leads to the three dimensional
Lie algebra given byX1, X2 and the nonzero bracket:

[X1, X2] = X12.

It has been widely studied since the pioneering paper
by R. Brockett [10]. In this case,(u, Λ) ∈ IR2 × so2,
andλ12 6= 0. In consequence

x(t) =
1

λ12
( sin (λ12t)I

− (cos(λ12t)− 1)
λ12

Λ
)

u0.

(3,6)-Case. This case corresponds ton = 3, it
has been studied, to some extent, by W. Liu and
H.Sussmann [11], O. Myasnichenko [12] and others.
It consists of the six dimensional nilpotent Lie algebra
given byX1, X2, X3 and the nonzero brackets

[X1, X2] = X12, [X1, X3] = X13,

[X2, X3] = X23.

In this case,(u, Λ) ∈ IR3 × so3, and the matrixΛ ∈
so3 has eigenvalues{iλ,−iλ, 0} with

λ =
√

λ2
12 + λ2

23 + λ2
31

=
√

(−tr(Λ2)/2). (11)
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ThusΛ satisfiesΛ(Λ2 + λ2I) = 0, and

x(t) =
(

tI − (cos(λt)− 1)
Λ
λ2

+ (λt− sin(λt))
Λ2

λ3

)
u0.

4 Sub-Riemannian geometry associ-
ated to the structure (G, ∆)

Let [0, T ] be a sufficiently small interval, and lett 7→
(g(t), u(t)) be a trajectory of the Gaveau-Brockett
system, the geodesics emanating fromg(0), are given
by t 7→ Exp(t, u(0)).

Let ρ > 0, thewave frontof radiusρ emanating
from g(0), is defined as

Wρ = Exp(ρ, ·),

thesub-Riemannian sphereSρ of radiusρ and center
g(0) is the set of points onG with sub-Riemannian
distance tog(0) exactlyρ, clearlySρ ⊂ Wρ.

4.1 The exponential mapping
Let us consider the initial conditiong(0) as the iden-
tity element ofG, and the co-vectors(u(0),Λ(0)).
The exponential mapping can then be written as fol-
lows

IRn(n+1)/2 −→ IRn(n+1)/2,

(u(0),Λ) 7−→ (x(u(0),Λ), zij(u(0),Λ)).

Sinceu2
1 + · · ·+ u2

n = R2 is constant, we can write

u2i−1(0) = Ri cos φi, and u2i(0) = Ri sinφi,

for i = 1, . . . , bn/2c, clearlyun(0) = Rbn/2c+1 for n
odd. But then

bn/2c+1∑
i=1

R2
i = R2,

andRbn/2c+1 = 0 for n even. Thus, the momentauj

can be parametrized in terms of spherical coordinates
for theRi.
The parametrization of the momentaλij in the gen-
eral case is by far more complicated, to our knowledge
there is no a general procedure.

(3,6)-Case.As we mentioned aboveR1 andR2 can
be parametrized by spherical coordinates as follows
R2 = R cos θ andR1 = R sin θ, therefore

u1 = R sin θ cos φ = R1 cos φ,

u2 = R sin θ sinφ = R1 sinφ,

u3 = R cos θ = R2 = Rb 3
2
c+1 6=0.

with θ ∈ [0, π] andφ ∈ [0, 2π].
For the parametrization of the momentaλij , let

us recall that the Lie algebraso3 is generated by the
following 3× 3 skew-symmetric matrices

µ1 = −e2 ∧ e3, µ2 = e1 ∧ e3, µ3 = e1 ∧ e2.

By using the basis{µ1, µ2, µ3} we have the mapping

ϕ : so3 −→ IR3,

x1µ1 + x2µ2 + x3µ3 7−→ (x1, x2, x3)

which is a linear isomorphism and clearly satisfy

ϕ[A,B] = ϕ(A)× ϕ(B),

here× denotes the standard cross product inIR3.
Henceϕ is a Lie algebra isomorphism. Furthermore,
for all R ∈ SO3 we haveφ(RART ) = Rφ(A).

Equation (11) is equivalent toλ2 = ‖φ(Λ)‖2, and
we take spherical coordinates

λ12 = −λ cos α,

λ13 = λ sinα cos β,

λ23 = −λ sinα sinβ,

with α ∈ [0, π] andβ ∈ [0, 2π]. The parametrization
of the exponential mapping

(R, θ, φ, λ, α, β) 7−→ (x, z),

with x = (x1, x2, x3), z = (z12, z13, z23), is now
complete in terms of the geometric invariants of the
problem.

Observe that we can always findR ∈ SO3 such
thatRΛRT is equal toλµ1, λµ2, or λµ3. In this sense
we can distinguishprivilegeddirections given by vec-
tors(λ, 0, 0), (0, λ, 0) or (0, 0, λ), depending on a se-
lected rotation axis associated withR.

4.2 Small radii spheres and the wave fronts

The wave front is defined as the set of end points of
geodesics of fixed length, which we take equal to 1.
The unit sphere is the set of points of geodesics at
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unit sub-Riemannian distance from the origin. Ex-
amples are given in this subsection fort = 1, in arc
length units. Cross-sections of the unit sphere and
the wave front are shown in figures 1 and 2, for the
case(3, 6) taking λ23 = λ31 = 0. The surfaces are
parametrized byλ = λ12 and the initial conditions
ẋ1(0) = 0, ẋ2(0) = cos α, ẋ3(0) = sin α.

Figure 1.Section of the unit sphere.

Figure 2.Section of the wave front.
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