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Abstract: -The analytical equation for the Liesegang operator has been obtained. The genetic relation 
between the Liesegang operator describing the behavior of the non-equilibrium oxyhydrate gel and the 
Hamiltonian of the vibrating sorption system is shown.  
 Having applied the principle of separability and having used the Liesegang operator we succeeded in 
giving the analytical description (to suggest the periodic ) of the sorption states of gel systems in coordi-
nates u = f(t) and u = f(cp), where u is the value of sorbtion. 
 In the appendix the satisfactory agreement of the experimentally obtained periodic sorption isoterms 
with the theoretical data is given. 
 
 
Key-Words:- Liesegang operator, oxyhydrate gel, harmonic oscillator, isoterms of sorbtion. 
 
1 Introduction  
Sorbtion of ions by non-linear oxyhydrates able to 
add the oxhydrate matrix (sorbtion with further co-
polymerization) is, in general case, of quite com-
plex periodic character during long periods. Such 
periodic curves describe the state of the far-from-
equilibrium sorbtion system (Fig.1). For such sys-
tems it seems reasonable either to experimentally 
define or theoretically calculate two-dimensional 
sorption isotherms in two coordinates: “equilibrium 
specific sorbtion - equilibrium sorbate concentra-
tion” as well as to introduce one more coordinate, 
namely “time” (Fig.1).   
 
2 The Liesegang operator and the Hamil-
ton-Jacobi equation  
The time coordinate describes not only the kinetics 
of sorbtion process but determines the change of 
some internal recurring states of adsorbent solid 
phase, i.e. its self-organization. Hence, it is the con-
stituent of the sorption isotherm. The task is to 
mathematically describe the change in these sorbate 
system states using the time coordinate since clas-
sical adsorbtion isotherms don’t give us such a pos-
sibility.  
 In our previous works [1,2] we introduced the 
so-called process evolution operator, the Liesegang 

operator, to describe the periodic self-organizing 
systems. To describe the self-organizing processes 
in gel we will use a simple one-dimensional model 
which makes it possible to illustrate the behavior of 
the Liesegang operator and, hence, the change in 
the sorbate concentration. To describe the above 
self-organization we will use the diffusion equation 
introducing the Liesegang operator: 
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where D  is the diffusion coefficient, l  is the line 
length for a given equation, [ ]uL  is the Liesegang 
operator, 0u,u  are some current and initial values 
of concentration of structuring fragments. 
 For the purpose of our work it is necessary to 
derive an approximate formula for the Liesegang 
operator. It is shown in [2] that the Liesegang op-
erator [ ]uL   is equal to uα , if the concentration of 
sorbate in gel has not reached the upper critical 
value of concentration  maxu , and it is equal to - uα , 
if the concentration of sorbate in gel has exceeded 
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the value maxu and started to decrease but has not 
yet reached the lower critical value minu . The ana-
lytic formula for a general case has not been found 
yet but it is quite possible to write a program for 
calculating this operator. 
 A clear idea of the possible Liesegang operator 
formulas can be inferred from a simple case. Ear-
lier we used the simplified equation of form (1) 
where the diffusion was neglected: 
 

]u[aL
t
u
=

∂
∂ . 

 
 Let us consider the different forms of the Lie-
segang operators. In the simplest case the Liese-
gang operator may be expressed in the form of the 
well-known periodic function [ ] tcosuL ωα= . 
Then, the differential equation will take the 

form: =
∂
∂

t
u tcosωα . As a result, we may write the 

concentration of the structuring fragments in the 

form tsinu ω
ω
α

= , assuming that the initial condi-

tion equals zero. This is the simplest way of the 
vibrating system modelling. 

In our research we used the other forms of 
the Liesegang operator for the vibrating system 
modelling, which are given further in the article.  
 We neglect the diffusion in (1) in order to sim-
plify the Liesegang operator and write it 
as [ ] [ ]uSgnuL α= , where α is some constant coef-
ficient. The operator [ ]uSgn  is determined as fol-
lows: we have two values of concentration: maxu  
and minu , with   minu < maxu . When u  reaches maxu , 

[ ]uSgn = – 1, when  u  reaches minu , [ ]uSgn  = + 1. 
 Equation (1) takes the following form: 

[ ]uSgn
td
ud

α= . Now we calculate the absolute val-

ues for both members. As a result the absolute val-
ues of time are α , i.e. the rate of concentration 
change for the model is constant. Hence, since in 
our case both the upper critical value maxu  and the 
lower critical value minu  (the so-called oscillations 
return points) remain unchanged, the Liesegang op-
erator takes the form: 
 

[ ] 
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minmax uu

tsinsgnuSgn . (2) 

 
Then the concentration of self-organized gel (sor-
bated ion) is: 

 

















−
πα

π
−

+=
minmax

minmax
min uu

tsinarccosuuuu . (3) 

 
 In our model we use the concentration coordi-
nate that describes some ideal periodic vibration 
law of sorbtion variation in non-linear oxyhydrate 
gels. Energy component of this periodic process is 
lacking. The Liesegang operator only implicitly 
includes the energy component. It enters into the 
constants of integration. 
 Another form of the Liesegang operator leads 
to the following decision 

)))t(sin(exp(arcsinAu ω= . The diagrams of the 
functions are presented in Fig. 2, 3. 
 It should be noted, that we use another form of 
the Liesegang operator, conjugated to the first one 
(Fig. 5), as in many cases we have to make calcula-
tions taking into account the precipitation dissolv-
ing in the dispersed medium. So we have to take 
account of some gel component transformed from 
the precipitation into the solution, which is a gen-
eral case. Then, the formula for the Liesegang op-
erator will take the form:    
 

t

0 max
max min 0

u U U exp sin sin u( )d
u u

   π
= − α τ τ     −   

∫ , (4) 

 
where u is the gel quantity in the solution, U0 is the 
total gel quantity, Umax is the maximum gel quan-
tity capable of transforming into solution. 
 The vibrations of a simple harmonic oscillator 
may be an actual analogue of periodic sorbtion. 
The oxyhydrate quasi-liquid-crystal gel (due to the 
particular properties of liquid crystals) [2,5] can be 
likened to some oscillator, which absorbs and then, 
by virtue of some physical-chemical reasons, de-
sorbs, which naturally causes the vibration process. 
From the analysis of bounded Hamiltonian systems 
[3] it follows that the trajectories of the oscillator 
containing the sorbate have the form of closed in-
variant curves in the phase plane. 
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 Thus, motion is periodic and the return to the 
same point ( )q,p  of space takes place after the cy-
cle with a period of ωπ /2  is completed, where ω  
is the frequency of motion, q,p  are the generalized 
impulse and the generalized coordinates.  
 The very idea of introducing the “action - an-
gle” variables lies in finding such a pair of costate 
variables, assuming that the costate “coordinate” 
increases by π2  with each complete cycle of mo-
tion. The “action-angle” variables are defined by 
θ,I , where I  is the constant conjugate momentum. 

The following expression for the generating func-
tion )I,q(S  can be written: 
 

)I,q(S
I

),I,q(S
q

p

∂
∂

=θ

∂
∂

=
. (5) 

 
 The generating function for the model of a sim-
ple harmonic oscillator with the Hamiltonian 

( )222 qp
2
1H ω+=  is expressed by:   

 

.dq)q
2
1I(2)I,q(S 22

q

q0

ω−ω= ∫  (6) 

 
 The equation for the generalized coordinates 
relationship ),I(qq θ=  can be written as: 
 

)tsin(I2q δ+ω
ω

= . (7) 

 
 It can be easily demonstrated that in some ac-
tual vibration process the vibration period is the 
difference of the vibration process return points 

minmax uu −  but in the adsorbtion process theory the 
process evolution operator  or  the  Liesegang  op-
erator  is used. The Hamilton – Jacobi equation [3] 
is genetically equivalent to the Liesegang operator. 
 Gel systems are metastable systems developing 
with time. In previous articles [6,7] we showed that 
the development of these systems occurs in helical 
fashion. It is natural that the spiral fragments form 
complex systems of double electrical layers on 
their surface. 

 Let us consider in theory the way Van der 
Waals forces act in polymer gel fragments against 
the background of self-organizing pulsating-
autosoliton processes of structuring. We will de-
scribe these processes with the help of the Liese-
gang operator [1,2]. Thus, we will try to give the 
colloid-chemical interpretation of the Liesegang 
operator, supposing that the Liesegang operator de-
termines the processes of gel self-organization.  
 Let us consider the colloid particle movement 
in the field of Lennard-Jones potential (intermo-
lecular forces of London – Van der Waals). Let’s 
perform the procedure of Lennard-Jones potential 
demeasurment. It is known that the Lennard-Jones 
potential has the form: 
 

126 r
B

r
CU +−=∆  (8) 

 
 Let’s demeasure the potential ∆U by means of 
the following operations. Let 0U  be the dimen-
sional and scale constant (suppose that the potential 
is measured in joules); 'U  is certain dimensionless 
quantity. In that case we can write the following 
product for the potential ∆U = U0U', so the product 
for the radius will take the form r = r0r'. Let us drop 
the primes. As a result we obtain the Lennard-Jones 
potential in the form of the proportion 

1212
0

66
0

0 rr
B

rr
CUU += . The equation of the colloid 

particle affected by the Lennard-Jones potential has 

the form: ,
dr
dUU
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mr , where primed and 

unprimed quantities are connected by the relation-
ship C' 6C, B' = 12B. As a result we get the rela-
tionship of the following form:  
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The dimensionless equation has the form: 
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 Unfortunately, it is impossible to define the ex-
act solution of the equation. That is why we have to 
solve this equation numerically.  
 In Fig. 4 the particle is shown “to get stuck” in 
the filed of potential attraction, performing cyclic 
vibrations close to the point r = 1.  
 If we compare the change of density or the 
change curve of polymer gel fragments concentra-
tion determined by the Liesegang operator in 
[2,8,9] shown in Fig. 5 with the moving curve of 
colloid particle shown in Fig. 4, it is easy to ob-
serve the visual identity of these curves. 
 The remarkable fact is that the particles form-
ing the gel in the field of Van der Waals forces are 
pulsating with time, that is, they perform complex 
vibrating movements, thus, periodically changing 
some dimensionless spherical radius (Fig. 4).  
These particle movements have two consequences, 
namely:  
 1) the particles acquire the physical possibility 
to rearrange themselves at some state or at some 
point of time, that is they change their spatial orien-
tation and surrounding (in that case the fragment 
will have the minimum energy for barrier turns); 
 2) the period of gel particles vibration is a cer-
tain constant of the system of oxyhydrate particles 
(pacemakers), organized in the oxyhydrate gel 
which is a certain system of attractors.  
 The Liesegang operator describes the self-
organization of gel system with time. The periodic-
ity of spherical radii changing in the field of Van 
der Waals forces and the geometrical identity of 
these curves (Fig. 4) to the Liesegang operator 
changing with time (Fig. 5) surely, indicate that the 
forces determining the Liesegang operator (the op-
erator of system self-organization) and the forces 
determining the Lennard-Jones potential are simi-
lar. The intermolecular forces initiate an instant 
“splash” of ions into the external environment, 
which happens after the ion sorbtion by gel swirl is 
finished.  When the particle acquires large poten-
tial, its movement in the Lennard-Jones potential 
may sharply change with time. 
 Thus, the introduction of the Liesegang opera-
tor as the reflection of the Hamilton-Jacobi equa-
tion is proved in terms of energy.  
 Such correlations are made to address not only 
the Hamilton-Jacobi equation, but the conditions of 
the Liesegang operator separability. In case of 
separable systems it is solvable and written as: 

,kk
k

k )q,
q
S(H α=

∂
∂  n,...,1k = . (11) 

 Where kα   are interconnected by the relation-
ship 'H... n21 =α++α+α=α , and α is the value 
of the transformed Hamiltonian 'H . 
 In case of the Liesegang operator the similar 
relationship can be written as: 
 

[ ] [ ] [ ] ...uLauLauLa
t

U
333222111 +++=

∂
∂   (12) 

 
3 Periodic isotherm of state  
The introduction of the Liesegang operator is justi-
fied by the possibility it (the Liesegang operator) 
gives to mathematically describe periodically de-
veloping complex processes of sorbtion with time. 
In this case we don’t need to find the analytical 
form of the complex sorption Hamiltonians of the 
system. 
 It is possible to make such a description for the 
mesophaselike systems, when a certain group of 
exchange centers (domains) acts as a liquid crystal 
one, i.e. it works coherently [4,5]. Therefore de-
scribing the isoterms of sorption one may deal with 
some energetically averaged functional domains 
conferred on the property the experimental of sepa-
rability.  
 In study of the sorption behavior of gel the iso-
term of sorption with time ( )t(fu = ) often has a 
not-simple vibration nature (Fig.1), which can’t be 
limited to the frequency of vibrations of some 
form. The graphs are more complex and even non-
periodical. It should be noted that from our point of 
view stated in our previous works [2], there is the 
only frequency of vibrations, which we modeled by 
three different equations. In the first case it has the 
form of a sine (or a cosine, or the sum of a sine and 
a cosine depending on the phase). 
 From graphs: )tsin(Au ω= , 

))t(arcsin(sinAu ω= , )))t(sin(exp(arcsinAu ω=  
it follows that the experimental data (e.g., Fig. 2, 3, 
4) coincide with neither of them at any frequency 
and any amplitude.  
 The adequate description of the isoterms of 
sorption in non-linear oxyhydrate gels can be per-
formed using the above principle of separability for 
the oxyhydrate systems. In our case this principle 
has a definite physical meaning. As it has been 
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found out before [10], there is a certain number of 
pacemakers in gel, i.e. some discrete particles 
(fragmentarily quantified) of gel not interacting 
with each other and defining the significant number 
n of the Liesegang operators. They also give the 
additive effect of adsorbtion. In case of zirconium 
oxyhydrate gels the number of pacemakers is 3-5 
[10]. Large diameter pacemakers are little different 
from the amorphous non- structured phase of gel. 
 In this connection a supposition arises: if 
autowave vibration in gel are exclusively deter-
mined by the forming of the attractors (pacemak-
ers), then there may be the infinite number of at-
tractors.  Therefore it seems reasonable to find the 
frequencies and amplitudes of vibrations for these 
attractors.   
 The concentration of the sorbate in gel can be 
presented in one of the three ways. It depends on 
the method used to define the attractor vibrations, 
i.e. we choose the Liesegang operator as follows, 
namely 
 

1a) )tsin(uu
N

1i
i ω= ∑

=

; 

or 1b) ∫
+∞

ω ωω=
0

d)tsin(u)t(u  

2a) ∑
=

ω=
N

1i
ii ))t(arcsin(sinuu ; 

or  2b) ∫
+∞

ω ωω=
0

d))t(sin(arcsinu)t(u  (13) 

3a) )))t(sin(exp(arcsinuu
N

1i
ii∑

=

ω= ; 

or 3b) ωω= ∫
+∞

ω d)))tcsin(exp(sin(aru)t(u
0

. 

 
 Note, that in the left equations (13 (1a, 2a, 3a)) 
the number of attractors is considered to be equal to 
N, in the right equations it is equal to infinity. 
 In case of the finite number of attractors it is 
necessary to find the parameters of iu  manually. In 
case of the infinite number of attractors (1b) it is 
necessary to solve the integral equation (9,1b). The 
spectrum of solutions is determined by: 
 

∫
+∞

ω ω
π

=
0

dt)tsin()t(u2u . (14) 

 The range of frequencies, for the experimental 
data presented in Fig.6, is diagramed in Fig.7.  In 
case we consider the attractor, vibrating according 
to the 2nd and 3nd integral laws, it is necessary to 
solve the Fredholm’s integral equation of the first 
kind, presented by the equations (13, 2b) and (13, 
3b). This problem is incorrect, so the regularization 
is needed.  We used the Fridman’s method of itera-
tive regularization  [11]. The calculations made in-
dicate that the quantity of the important frequencies 
constitute 5 at most. The values of ωu  for the other 
frequencies are about zero. This is another argu-
ment for the fact that the number of pacemakers in 
the considered gels is equal to 5 or less than 5.    
 The calculations of the isoterms of sorption of 
yttrium (3) ions by the zirconium oxyhydrate gels 
under conditions of saturation of gel phase by 
 the yttrium (3) ions were performed on the as-
sumption that the maximum number of pacemakers 
is 5 and the Liesegang operator (13, 1a) is valid.  
The conditions of saturations were chosen on the 
assumption that the processes of peptization (de-
struction) of the gel phase under such conditions 
manifest themselves to the maximum degree, Fig.1. 
For a general case the isoterm of state is written: 

∑
=

ϕ+ω+=
n

1i
iii0 ))t(arcsin(sinAuu , (15) 

where 0u is some average value of the sorbtion, 
mmole/g, iω  is the frequency of variations, iϕ  is 
the phase deviation, value i  may vary between 1 
and 5. 
 It is reasonable to consider the isoterms of sorp-
tion state in terms of a non-linear dynamic sorbtion 
system far from equilibrium as some section sur-
faces in coordinates )t(fu =  and )c(fu p= . The 
isoterm states of the type )c(fu p=  are written as: 

∑
=

ϕ+ω+=
n

1i
ipii0 ))c(arcsin(sinAuu . (16) 

 For the comparison purposes the nature of ex-
perimental and calculated isoterms is given in ap-
pendix. We observe the satisfactory agreement be-
tween the experimental and calculated isoterms of 
sorption (Appendix). 
 
4   Conclusion  
 The analytical equation for the Liesegang op-
erator has been obtained.  The genetic relation be-
tween the Liesegang operator describing the behav-
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ior of the non-equilibrium oxyhydrate gel and the 
Hamiltonian of the vibrating sorption system is 
shown.  
 Having applied the principle of separability and 
having used the Liesegang operator we succeeded 
in giving the analytical description (to suggest the 
periodic sorption isoterms) of the sorption states of 
gel systems in coordinates u = f(t) and u = f(cp), 
where u is the value of sorbtion. 
 The work is executed under grant RFBR (Rus-
sian fund of basic researches; the project No 04-03-
96050). 
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Fig. 1. The tree-dimentional sorption isoterms of 
the yttrium ions (3) in the coordinates Γ = f(Cp, t), 
 
where Г – is the value of the sorption, Cp – is the 
quasi-equilibrium sorbate concentration, t – is the 
time;  
 
a) the isoterm got after the contact of the fresh gel 
with the yttrium ions sorbate; b) the isoterm got 
after the 24 hours gel standing in sorbate. 
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Fig. 2. Function )t(fu =  written by the equation 

))t(arcsin(sinAu ω= . 
 

 
Fig. 3. Function )t(fu =  written by the equation 

)))t(sin(exp(arcsinAu ω=  

 
Fig.4. The particle “sticks” in the attraction field, 
making cyclic movements. 
 

 
Fig. 5. The dependence of concentration on time 
(the Liesegang operator) conjugated to the first one 
(Fig.3) 
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Fig. 6. Experimental data of the function )t(fu = . 
 

 
Fig. 7. The range of frequencies for the data of 
Fig.4 for the equation (9, 1b) solution. 
 
Appendix  
The sorption isoterms were obtained by the filtra-
tion of the yttrium nitrate solution through an ion-
exchange column, filled up with the freshly pre-
pared zirconium oxyhydrate gel. In the former case 
the sorption isoterms were obtained by the filtration 
of the yttrium nitrate solution through an ion-
exchange column filled with the zirconium oxyhy-
drate gel till the moment of the gel saturation. In 
the latter case the sorption isoterms were obtained 
by the filtration of the yttrium nitrate solution 
through an ion-exchange column filled with the 
zirconium oxyhydrate gel after the moment of the 
gel saturation.  
 The isoterms were taken off at pH 5.5. The iso-
term of sorption for a general case is written as: u = 
u0+A1arcsin(sin(ω1 t+ϕ1))+ A2arcsin(sin(ω2 t+ϕ2))+ 

A3arcsin(sin(ω3t+ϕ3)) + A4arcsin(sin(ω4t+ϕ4)) + 
A5arcsin(sin(ω5t+ϕ5)); 
 
1. Ions yttrium sorbtion of the gel before 
the gel’s yttrium saturation.  
 
The experimental points (Fig.1(a)) are marked on 
the figures as round points. 
Section: t = 60 min 
 

 
Fig. 8. Calculated isoterm of the sorbtion of the yt-
trium ions (3): 
Г = 0.013400 - 0.000610 ⋅ arcsin(sin(2.88000⋅cp + 
1.500000)) + 0.000700 ⋅ arcsin(sin(2.85000⋅cp –
0.800000)) + 0.004000 ⋅ arcsin(sin(0.63000⋅cp + 
1.200000)) + 0.000900 ⋅ arcsin(sin(1.10000⋅ cp + 
2.500000)); 
 
Section: t = 36 min 
 

 
Fig. 9. Calculated isoterm of the sorbtion of the yt-
trium ions (3): 
Г = 0.009700 – 0.000950 ⋅ arcsin(sin(2.58000⋅cp+ 
2.000000))+0.000990 ⋅ arcsin(sin(2.55000⋅ cp – 
0.070000))+0.002700 ⋅ arcsin(sin(0.77000⋅ cp + 
0.880000))+0.000730 ⋅ arcsin(sin(1.30000⋅ cp + 
1.900000)); 
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2 The interaction of the gel with the yt-
trium ions after the gel’s yttrium satura-
tion.  
The experimental points (Fig.1(b)) are marked on 
the figures as square points.  
 Section: Quasi-equilibrium concentration of sor-
bate, С = 0,07 mole/l  
 

 
Fig. 10. Calculated isoterm of the sorbtion of the 
yttrium ions (3): 
Г= u = 0.000000 –0.000240 ⋅ arcsin(sin(13.40000⋅t 
–1.800000)) + 0.000360 ⋅ arcsin(sin(3.80000⋅t –
3.300000)) –0.000360 ⋅ arcsin(sin(6.50000⋅t – 
4.100000)) + 0.000600 ⋅ arcsin(sin(0.50000⋅t –
1.900000)) – 0.000360 ⋅ arcsin(sin(11.10000⋅t –
1.000000)); 
 
Section: Quasi-equilibrium concentration of sor-
bate, С = 0,09 mole/l.  
 

 
Fig. 11. Calculated isoterm of the sorbtion of the 
yttrium ions (3): 
Г= u = 0.000005 –0.000480 ⋅ arcsin(sin(4.10000⋅t –
3.800000)) + 0.000360 ⋅ arcsin(sin(5.50000⋅t –
3.900000)) –0.000480 ⋅ arcsin(sin(6.30000⋅t –
6.000000)) + 0.000240 ⋅ arcsin(sin(17.50000⋅t + 
1.900000)) –0.000360 ⋅ arcsin(sin(3.00000⋅t + 
2.600000)); 
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