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Abstract: - This paper address the problem of diminishing the total computer time needed to complete the design 
process of electronic circuits. Using a new formulation, based on the optimal control theory, a general 
methodology is introduced and the idea of the quasi-optimal design strategy’s existence is developed. Some 
numerical results are presented in this paper to support this affirmation and to show the great perspective that 
this methodology has in design’s theory. 
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1   Introduction 
Since early approaches to the optimal control theory, 
the application to practical problems became obvious 
specially in physic systems, those that have the 
particularity to be a controllable dynamic system. As 
examples of such applications are: a lunar soft 
landing [1]; the landing of a jet aircraft in an aircraft 
carrier [2]; a micro-satellite’s stabilization [3]; and so 
on. Other interesting applications have include 
nuclear research, electricity supply, chemical process 
industries; and the military field like the design of 
multilayer antireflection coatings, useful in evading 
radar systems [4]. For the first time optimal control 
has been applied to the system design theory [5]-[6]. 
    As a result, a new and more general theory for 
design process of systems, the General Design 
Strategy (GDS) [5]-[6] for systems which are 
described by means of non-linear algebraic equations, 
has been obtained. On the bases of this theory it is 
possible to compare the different types of systems 
and circuits design strategies. The GDS produce a set 
of M2  different basic design strategies, where 
traditional methodology is contained, and where M  
is the nodal equations number. On the other hand, a 
more general approach generates an infinite number 
of different design strategies. It is clear that among 
these strategies there is one optimal strategy. The 
quasi-optimal design strategy is defined as the 
strategy that achieves the optimum of the design 
objective function of the design process for the 
minimal computer time, which is equivalent to the 
minimal-time problem of the optimal control theory.  

    In section 2, a new formulation for designing based 
on control theory is introduced. How to reproduce all 
the basic design strategies generated by the new 
formulation is explained in section 2. The optimal 
strategy that jumps trough basic strategies is 
explained in section 4. A numerical example is given 
in section 5 to show the great perspectives of the new 
proposal in diminishing the computer time needed for 
the total design process.   
 
 
2   General design formulation 
It is possible to generalize the circuits and systems 
design process by introducing an optimal control 
vector in it, defined as  
 

),...,,( 21 MuuuU =                  (1) 
 
where Ω∈ju , }1;0{=Ω and M  is the total 

number of nodal equations of the circuit. The main 
system equations can be defined then by 
 

),,( UXf
dt
dx

i
i =    Mi ,...,2,1=        (2) 

 
where X  is the total variables vector that is divided 
in two parts, one for independent variables ( 'X ), and 
another one for dependent variables ( ''X ), to obtain 
 

}'','{ XXX = .                             (3) 
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The convenience of equation (3) becomes clear in 
next section. In order to meet with the design 
requirements an objective function is defined and 
then minimized, in this case  
 

),()(),( UXXCUXF ϕ+=             (4) 
 
where )(XC  is the simple objective function that 
contains the actual requirements while ),( UXϕ  term 
are the so call penalty functions that simulates the 
system according to control variables vector selection 
and is defined as 
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Here the terms )(2 Xg j  are taken from the main 

system equations  
 

0)( =Xg j                           (6) 

 
where the squared form avoid contribution 
eliminations by opposite signs. The equation (4) is 
subject to  
 

)()1( Xgu jj− .                     (7) 

 
System equations (7) is a modified formulation of  
equation (6) that gives the possibility to decide  
which equation is part of the system and which one is 
not, by means of the control variables. 
   This new methodology is the General Design 
Strategy (GDS) for circuits and systems that has great 
perspectives of diminishing the total computer time 
required for the design process. 
 
   
3   GDS generation 
In Fig. 1 the flow diagram for the general 
methodology GDS is shown. It begins with the 
necessary initializations such as the reading of values 
for the X  total variables and the vector U . The 
vector U  is defined by equation (1), and M is the 
total number of nodal equations, thus there exist M2  
possible combinations an so possible design 
strategies. After variables initialization there is the 
GDS module, that will be useful in next section, it 
contains the two main parts of design process. Within 
Part I the system )()1( Xgu j−  with Mj ,...,2,1= , 

is solved, while Part II is divide in two subparts, one 
for evaluation of penalty functions given by equation  

 

 
 
Fig. 1. Flow diagram simplified for General Design 
Strategy (GDS). 
 
(5) and  contained in the objective function (4); and 
other one for optimization procedure that is applied 
over )(XF . Notice at this point that 0=ju  means 

presence of equation j  in the system, and absence of  

penalty function j , on the contrary 1=ju  means 

absence of the equation j  in the system and presence  
in penalty function j  in Part II. GDS module finish 

with an update of the total variables vector 1+nX  
defined by equation (3), and affected by control 
variables vector U  as follows:  
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where )1( jj uu −= . Independent variables 
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n
K xxx can be seen as 

dependent or independent variables by means of 
control variables ju  which values decides whether a  
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Fig. 2. Flow diagram for the quasi-optimal design 
strategy. 
 
dependent variable will be considered as independent 
one or keep his dependent nature. Here 0=ju  

means that  ')'( 11 ++ ∈ nn
j Xx  and 1=ju  means that 

)'( 11 ++ ∈ nn
j Xx . Clearly the cases where 1+n

jx  

belongs to both )'( 1+nX  and ')'( 1+nX  or where 

neither belongs to )'( 1+nX  nor ')'( 1+nX  are not 
allowed. The flow diagram for GDS finish with the 
evaluation of ),(1 UXF n+  and asking if design 
requirements have been reached, if yes, actual value 
of X vector is shown and the design process is over; 
else another step take place and the process is 
continued. 
    We conclude that the total control variables vector 
U  used in the GDS, give us the possibility to 
generate not only the traditional methodology but 
other set of design strategies that never have been 
consider before. This new design strategies arise 
owing to all possible value combinations )2( M  of 

control variables ju , Mj ,...,2,1=  under the 

assumption that U  vector is fix along the entire 
design process 
 
 
4 The quasi optimal design strategy 
In the past section we consider U  fix within GDS, 
however there exist the possibility to change values 
of control vector at any numerical step of the design 

process, this would means a switch of strategy. Many 
switches can be applied along the complete design 
process, defining each switch, a new design strategy. 
We name basic strategy when U  is fixed along the 
design process. The utility of switching strategies is 
the approach to the optimal trajectory that we name 
quasi-optimal trajectory ( pO ). This idea is justified 

by the maximal principle of the optimal control [7].  
    The simplified flow diagram for pO  is shown in 

Fig 2. It begins with the necessary initializations, 
specially for X   and U  vectors, and thus an initial 
design strategy is selected. Using the GDS Module of 
Fig. 1, an optimization procedure is applied to 
minimize ),( UXF  that is defined by equation (4), 
subject to the system equations (7). After this, we 
need to now if design conditions has been meet, it is 
considered so when ),( UXF  has a value equal or 
less than a certain ε , if  design conditions are not 
completed yet, the module of strategy selection is 
used to decide whether a new design strategy is 
needed or not. The process continues until desire 
conditions or maximum iterations’ number, have 
been satisfied.    
    The quasi-optimal strategy gives the possibility to 
reduce the CPU time needed to complete the total 
design process. This affirmation will be illustrated 
with a numerical example in the next section. 
  
 
5 Numerical Results 
As an example of the new proposal a two stages 
amplifier circuit is analyzed in this section, see Fig 3.  
 

 
 

Fig. 3. Two stages amplifier circuit. 
 
This circuit has five nodal voltages 521 ,...,, VVV  that 
are considered dependent variables under traditional 
methodology and five admittances 521 ,...,, yyy  
which actually are independent variables. Therefore, 
the total variables vector has ten elements, 
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),...,,( 1021 xxxX = . On the other hand, the simple 
objective function is given as 
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where it is suitable to define Vkv 0.9= , 

V28.031 == ρρ  and V0.242 −== ρρ . The total 
objective function is given by equation (4), where 

5=M  for this example. The model used for 
transitors of Fig. 3 is the BJT Spice2 [8] and its 
characteristics are selected the same, 

AxII SS
9

21 1020 −== , 10021 == FF ββ  and 

121 == RR ββ . The result analysis of some design 
strategies for gradient and Davidon-Fletcher-Powell 
(DFP) optimization methods using initial vector 
 

)7.6,1.6,4.6,5,3.5,2,2,2,2,2(0 =X       (9) 
 
is shown in Table 1, the control variables U  is fixed 
along of design process in this case. For both gradient 
and DFP methods, the best strategy is that generated 
by control vector )1,0,1,1,1(=U  with 1.82 s. and 
0.55 s. respectively. The traditional methodology 
corresponds to control vector )0,0,0,0,0(=U  with a 
CPU consumption time of 236.34 s. and 62.64 s. for 
gradient and DFP methods respectively. Cleary the 
traditional methodology is not the optimal one for 
this example but this situation is valid for all circuits 
analyzed. 

 
Table 1. Some design strategies for the amplifier of 
Fig. 3. 

         Gradient      DFP         
  U No. of 

Iterations 
CPU 
Time(s) 

No. of 
Iterations 

CPU 
Time(s) 

00000 
00101 
00111 
01101 
10101 
10110 
10111 
11100 
11101 
11110 
11111 

105395 
  14860 
  23517 
    4529 
    2471 
  88742 
    7624 
  80723 
    2652 
102014 
  15938 

256.34 
  25.54 
  31.58 
    6.21 
    2.21 
122.98 
   5.33 
111.55 
   1.82 
104.08 
    2.69 

14076 
  2625 
  2676 
    791 
    395 
 12874 
    799 
 15835 
    392 
13564 
  1586 

62.64 
  8.35 
  6.71 
  1.98 
  0.66 
32.84 
  1.11 
39.71 
  0.55 
24.93 
  0.67 

 
    The result of analysis for the circuit of Fig. 3 when 
control vector U  is variable along the design process 
is shown in Table 2. The quasi-optimal design 

strategy has CPU time consumptions of 0.504 s. and 
0.147 s. for the gradient and DFP optimization 
methods respectively. This means that the gain in 
time of Op  against the traditional methodology is 
509 and 427 for the gradient and DFP methods 
respectively. 
 
Table 2. Data of quasi-optimal design strategy Op for 
circuit of Fig. 3. 

Method U  No. of 
Iterations 

CPU time 
(s) 

Gain 

Gradient (11111, 
00000, 
11111) 

        105 
            2 
         321 

 
 
   0.504 

 
 
 509 

DFP (11111, 
00000, 
11111) 

        104 
1 

          18 

 
 
   0.147 

 
 
 427 

 
 
    On the other hand, it must be said that in all 
circuits analyzed the traditional methodology has 
been not the optimal one. 
 
 
6 Conclusion 
The general design formulation for electronic circuits 
design process gives the possibility to increase the 
total number of basic design strategy and actually 
permits an infinite number of possible design 
trajectories. According to the optimal control theory 
among this possible trajectories there exist one that is 
optimal in the sense of time. The approach to this 
optimal trajectory, the quasi-optimal strategy, shows 
a great perspective in decreasing the total computer 
time needed to complete the design process. 
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