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1 Introduction

According to Gilbert and Bernstein [1], mathe-
matical rigorous treatments of second order nec-
essary conditions for problems in optimal control
seem to be limited. In their paper, two widely
quoted works due to Hestenes [2] and Warga [3]
are mentioned and the main results obtained in
[1] are compared with those references.

Hestenes, whose work is the earliest, consid-
ered a fairly general optimal control problem but,
quoting [1], made the standard assumption that
the control set is open. The aim of this paper is to
show how the necessary conditions obtained in [2]
for such an unconstrained problem can be used to
derive such conditions for problems with mixed
equality constraints. The approach i1s based on
a uniform implicit function theorem established
precisely in [2].

Let us begin by stating the problem we shall
be concerned with together with well-known first
order necessary conditions. The results of this
section are taken up from [2].

Suppose we are given an interval T' := [tg,11]
in R, two points &, & in R™, aset Ain T xR" x
R™ and functions L and f mapping 7T x R" xR™
to R and R" respectively.

Denote by X the space of piecewise C'! func-
tions mapping 7' to R", by U the space of piece-

wise continuous functions mapping 7' to R™ | set

Z =X xU,
Z(A) :={(z,u) € Z | (t,z(t),u(t)) € At €T)},

D(f) =={(z,u) € Z | &(t) = f(t,2(t), u(t))
(teT)},
Ze(A f) = A{(x,u) € Z(A) N D(f) |
z(to) = &o, z(t1) =&t

and consider the functional I:Z — R given
by I(z,u) == [ L(t,z(t), u(t))dt ((x,u) € Z).
The problem we shall deal with, which we label
P(A, f, 1), is that of minimizing I over Z(A, f).

Elements of Z will be called processes, and a
process (z, u) solves P(A, f,I)if (z,u) € Zc (A, f)
and I(z,u) < I(y,v) for all (y,v) € Z.(A, f).

For any (x,u) € Z we shall use the notation
(Z(t)) to represent (¢, z(t),u(t)), and *’ denotes
transpose.

Assumptions

A. The functions L, f and their partial deriva-
tives with respect to x are continuous, and A is
admissible in the sense that, for each (s,y,v) € A,
there exist and u:[s — d,s + ] — R™ continu-
ous such that u(s) = v and (¢, 2,u(t)) € A for all
(t,z) € T x R" such that |(¢,z) — (s,y)] < 4.

B. The functions L, f are C? and A is (rela-
tively) open.

For all (t,z,u,p, \)in TxR" xR" xR" xR
let H(t, z,u,p,A):=(p, f(t,x,u)) — AL(t, z, u).

1.1 Theorem: Assume (A) holds and (xg, ug)
solves P(A, f,I). Then there exist Ay > 0 and
p € X, not both zero, such that

a.p(t) = —H:(Zo(t),p(t), Ao) on every interval
of continuity of ug.
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b. H(t,xo(t), u, p(t), o) < H(Zo(t),p(t), Ao)
fora]l(tu)ETxR W1th(tx0() u) € A

1.2 Note: In Theorem 1.1, the function ¢ —
H(#0(t),p(t), Ao) is continuous on T. Also, if
(B) holds, then Hy(Zo(t),p(t), o) = 0 and
Hyu(Zo(t),p(t), Ao) <0 (t€T).

In the remaining of this section we assume that

(B) holds.

1.3 Definitions:

e For all (z,u) € Z the set of admissible vari-
ations along (x,u) will be given by

Yole,u) = {(y.v) € Z | y(to) = y(t2) = 0,
§(0) = A0y(1) + B)e(t) (1 € T)),
where A(t) = o (3()), B() = fu(#(1)) (t € T).

e A process (z,u) will be said to be normal to
P(A, f,I) if the equations

—A*(0)p(t) [ =—-Hz(2(),p(t),0)]
B )p(t) [= Hy(@(1),p(1),0) ]

have no nonnull solution p on 7'.

plt) =
0 =

e For all (z,u) € 7 let My(x,u) denote the
set of all (Ag,p) € R x X such that Ay > 0,

Ao+|pl #0,p(t) = —HE(t, Ao), and Hy(t, Ag) =0
(t € T), where H(t, Ag) denotes H(&(t), p(t), Ao),
and consider the following sets:

&o = {(z,u,p) € Z x X | (z,u) € D(f)
and (1,p) € My(x,u)}
Ho = {(x,u,p) €4 xX | JO(($’U); (y’ v)) >0
for all (y,v) € Yo(z,u)}

where, for all (y,v) € Z,

Jo((2, w); (v, v)) = / “200 (1, y(t), o))t

and, for all (¢t,y,v) €T x R" x R™,

20(t, y,v) == —[(y, Hepw(t, Dy) +

2y, Hou(t, 1)v) + (v, Huu(t, 1)0)]

where H (¢, 1) denotes H(Z(t),p(t), 1).

1.4 Lemma: Suppose (zq, tg) € Ze(A, f) is nor-
mal to P(A, f,I) and (y,v) € Yo(wo,ug). Then
there exist § > 0 and a one-parameter family

(2(-,€),u(-€)) € Z(A, f) (le] < d) such that

io2(t,0) = zo(t), u(t,0) = up(t) (t€T).
. z(¢,0) = y(t), uc(t,0) =wv(t) (t €T).

The following result summarizes in a succinct
way first and second order necessary conditions
for problem P(A, f, I) under assumption (B). We
provide a simple proof, similar to the one given
in [2], based on the results quoted above.

1.5 Theorem: Suppose (z,u) solves P(A, f, I).
Then My(z,u) # 0. If (x,u) is normal to
P(A, f,I) then there exists a unique p € X such
that (z,u,p) € &. Moreover, (z,u,p) € Hy.

Proof: Suppose (g, ug) solves P(A, f, ).
Theorem 1.1 and Note 1.2, M(zq,ug) # 0. Let
(Ao, p) € Mo(g, ug) and suppose (zg, ug) is nor-
mal to P(A, f, 7). This implies that Ag # 0 and,
if (Ao,q) € My(xo,ug), then r := p — ¢ satis-
files #(t) = —A*(t)r(t), 0 = B*(t)r(t) t € T),
implying that p = ¢. Clearly we can choose
Ao = 1 since (1,p/Ag) € Mo(xg,ug). Suppose
therefore that (xo,up,p) € &. To show that
(g, ug, p) € Ho, define

K(x,u) := (p(t1),&1) — (p(to), &o) +

t1
/ Ft,e(t),u(t))dt ((z,u) € 7)
to
where, for all (¢,z,u) € T x R" x R™,

F(t’$’u) = L(t,l‘,u)—<p(t),f(t,l‘,u)>—<j)(t),l‘>.

Observe that

F(t,x,u)=—H(t, z,u,p(t),1) — (p(t), )
and, if (x,u) € Z¢(A, f), then K(z,u) = I(z,u).
Let (y,v) € Yo(xo,uo) and let (z(-,€),u(-,€)) €
Ze (A, f) (|¢| < &) be a one-parameter family sat-
isfying Lemma 1.4. Hence

satisfies g(e) > ¢(0) = K(zo,up) = I(J:o,uo)
for all |¢|] < §. Note that Fy(&y(?)
Fu(Zo(t)) = 0 and, therefore,

g"(0) = K"((w0, wo); (y, v))

0 <
= Jo((xo, uo); (y,v)). I

2 Auxiliary results

In this section we state three results (see [2] for
details) which play a fundamental role in the de-
riviation of second order conditions for problem
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P(A, f,I) when A is defined in terms of mixed

equality constraints.

2.1 Theorem (Implicit function): Let f: A —
R" where A C R™ x R" is open. Suppose f
and f;(t,x) are continuous on A and there exist
Ty C R™ compact and zy: Ty — R continuous
such that, for allt € Ty,
i (1, w0(1)) = 0 and |a(t, 20(t))] £ 0.

Then there exist T' neighborhood of Ty, € > 0 and
z:T — R" continuous, such that

a. x(t) = xo(t) forallt € Ty.

b. f(t,z(t))=0forallt €T.

c. teT, flt,2) =0 and |z — 2(t)] < €¢) =
r=x(t).

d. feC™(A) = xeC™(T).

2.2 Lemma: Let ¢ be a C! function mapping
R" x R™ to RY. Let

S:={(x,u) e R" x R" | p(z,u) = 0}

and suppose the matrix ¢, (x,u) has rank q on
S. Then there exist a neighborhood S of S and
a continuous function U: S — R™ such that

a. (z,U(x,u)) € S for all (x,u) € S,

b. U(z,u) = u for all (z,u) € S.

If ¢ is of class C" then U can be chosen to be of
class C" on S.

Proof: Let h:R" x R™ x R? — RY be given
by h(x,u,b) := o(x,u+ ¢} (x,u)b). We have h
and hy continuous on R" x R™ x R? and, for all
(z,u) € S, h(x,u,0) =0 and

s, 1, 0)] = [ipu (2, )2 (2, w)| # 0.

Suppose first that S C R" x R™ is compact. By
Theorem 2.1 there exist S neighborhood of 5,
¢ > 0 and B: S — R continuous, such that

a. B(z,u) =0 for all (z,u) € S.

b. h(x,u, B(x,u)) =0 for all (z,u) € S.

c. ((z,u) €S, h(x,u,b) =0and |b—B(z,u)| <
€) = b= B(z,u).

d.heC" = BeC(S).
Let U(x,u) = u+ @) (x,u)B(x,u) for all (z,u) €
S. Then U satisfies the required properties. For
the case S not compact and the fact that U can
be chosen to be of class C" on S, we refer to
Hestenes’ book [2]. 1

2.3 Note: Observe that the function B: S — R?
satisfies

B'(z,u) = —(hy(z, u, 0))_1hx7u(1‘, u,0)

for all (z,u) € S and therefore, if D(x,u) =
[pu (@, u)gy (2, )], then

By(z,u) = —=D(x, u)py(, u),

By(z,u) = =D(z, u)py (2, u)

for all (z,u) € S. Hence U: S — R™ defined by
U(x,u) = u+ ¢} (x,u)B(x,u) satisfies, for any
(z,u) €S,

U (z,u) = =gy (x,u) D(x, u)ps (2, u),
Up(z,u) =T — @) (x,u) D(x, w)pyu(z, u).

To state the last auxiliary result we shall need,
suppose we are given an interval T' = [a,b] in R
and functions f and g mapping T'x R™ to R and
RY respectively, with f, ¢ continuous and having
continuous partial derivatives with respect to wu.
Let

S:={t,u)eT xR™|g(t,u) =0}

and suppose the matrix g, (¢, u) has rank ¢ on
S. Denote by U, as in Section 1, the space of
piecewise continuous functions mapping 7" to R™
and let

US) ={uel|(tul)eS (teT)}.

2.4 Lemma: Suppose ug € U(S) is such that
Ft,uo(t)) < f(t,u) for allt € T with (t,u) € S.
Then there exists a unique p: T — RY such that,
if
F(t,u) = f(tu) +(p(t), g(t, u))

for all (t,u) € T x R™), then F,(t, uo(t)) = 0
(t € T). Moreover, {h, Fyy(t,uo(t))h) > 0 for all
h € R™ such that g, (t,ug(t))h = 0. The function
1 1s piecewise continuous on I' and continuous at
each point of continuity of ug.

3 Mixed equality constraints

Consider problem P(A, f, I) of Section 1. Assume
L, f are C? and

A={(t.e, ) €T x R" x R™ | p(t,2,u) = 0}

where p: T x R" x R” — R is of class C? and
the matrix ¢, (¢, z,u) has rank ¢ on A. Denote
by U, the space of piecewise continuous functions
mapping T to RY.

For all (¢, z,u,p,p, A\)in T x R" x R™ x R" x
R? x R let

H(t,x,u,p,ﬂ,/\) = <p,f(t,l‘,u)> -
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AL(t, 2, u) — (p, o(t, 2, u)).

Let us begin by showing how first order neces-
sary conditions for this constrained problem can
be derived from those for the unconstained one
stated in Section 1.

3.1 Theorem: If (xy,up) solves P(A, f,I), then
there exist Ao > 0, p € X, and u € U, continuous
on each interval of continuity of ug, not vanishing
simultaneously on T', such that

a. p(t) = —H}(t, Ao) and Hy(t, Ag) = 0 on ev-
ery interval of continuity of ug.

b. H(t,zo(t), u, p(t), u(t), Ao) < H(t, o) for all
(t,u) €T x R™ with (t,zo(t),u) € A
where H (1, \y) denotes H(Zo(t),p(t), p(t), Ao)-

Proof: By Lemma 2.2 there exist a neighbor-
hood B of A and a C? function U: B — R” such
that (¢, 2, U(t,z,u)) € A for all (¢t,z,u) € B, and
U(t,z,u) = u for all (¢,z,u) € A. Set

f(t, zou) = f(t,x, Ut z,u)),
ﬁ(t, zyu) = L{t, 2, U(t, z,u))
for all (¢,z,u) € B, and

I, ) ::/tlﬁ(t,x(t),u(t))dt

for all (x,u)AE Z(B).
P(B, f, 1), i.e

1. (l‘o,Uo) € 7. (B f)

ii. I(J:o,uo) < I(x a) for all (z,4) € Z.(B, f)
Since (xg, ug) solves P(A, f, I) we have (g, ug) €
Ze(.A,f) and I(xzg,ug) < I(x,u) for all (z,u) €

Ze(A, f). Hence (t, o(t),u t))eAcCB(tel),
zo(t) = f(t zo(t), uo(t)), aI}d so (i) holds. To
prove (ii) let (&, %) € Z.(B, f) and define

Let us prove that (g, ug)
solves

() = @(1), u(t) = UL, &(t), a(t)) (L €T).

Then (¢, 2(t),u(t)) € A, #@t) = f(t,z(t),u(t))
(t€T),and so (x,u) € Z.(A, f). Also I(x,u) =
f(i‘, @) and f(xo, ug) = I(xg, up) and so (ii) holds.

Now, by Theorem 1.1 applied to (g, ug) with
respect to P(B, 1, f), there exist Ag > 0 and p €
X, not both zero, such that if

H(t, €T, U) = <p(t), f(ta z, u)> -

for all (¢,2,u) € B, then
a. p(t) = —HZ (&

tinuit)i of ug.
b. H{(t, zo(t),
R™ with (¢, zo(t),

/\oﬁ(t,x,u)

(t)) on every interval of con-

u) < H(&o(t)) for all (t,u) € T x
u) € B.

Define

Gt e, u) = (p(t), flt, e, u)) —

Gt e, U(t,z,u)) for all
) =uforall (t,2,u) €

AoL(t, 2, u)

so that H(t,x,u) =
(t,x,u) € B. Since U(t, »
A, it follows from (b) th
Gty wo(t), u) < G(zo(t))
for all (t,u) € T x R™ with (¢,zo(t),u) €
A. Let g(t,u) := o(t,20(t),u) and h(t,u) =
—G(t,zo(t),u) for all (t,u) € T x R™ and set

S:={{t,u) eTxR"|g(t,u) =0}.

Since h(t,uo(t)) < h(t,u) for all (t,u) € S, by
Lemma 2.4 there exists a unique g € U, such
that, if we set

F(t,u) = ht, u) + {pu(t). g1, )

then Fy(t, uo(t)) = 0. In other words, if

Gt e, u) == G(t,2,u) — (ut), o(t, z,u)),

so that G’(t, zo(t),u) = —=F(t,u), then

— 1 (t)pu (To(2)).

The function g is continuous on each interval
of continuity of ug. Since, for all (¢,z,u) € B,
we have (t,2,U(t,x,u)) € A and f](t, T,u) =
Gt e, U(t,z,u)), it follows that

0= Gulio(t)) = GulEo(t))

H(t,e,u) =Gz, Ut,e,u)  ((t,2,u) € B).

Consequently,

Ho(Fo(t) = Goliof
G

Since G’(t,x,u) = H(t,z, u,p(t),
conditions of the theorem hold. 1

u(1), o), the

3.2 Corollary: If (xg,ug) solves P(A, f,I) and
(p, ity Ao) Is as in Theorem 3.1, then

<haHuu(jO(t)ap(t)aﬂ(t)aAO)h> S 0
for all h € R™ such that o, (Zo(t))h = 0.

3.3 Note: Suppose that, for some (z,u) € 7,
p € X, A€ R and afunction p: T — R?, we have

0= Hy(Z(t), p(t), p(t), A)

[=p" () fu(2(t)) -
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for allt € T. Then p € U, and

P (1) = {p () fu(2(1)) = ALu(&(1)) Y (2(1)) D(1)
for all t € T', where D(t) = [pu (Z()) ek (2(1))]7L.

3.4 Definitions:

e For all (z,u) € Z define the set Yi(x,u) of
admissible variations along (x,u) as the set of all
(y,v) € 7 satisfying

Loy(to) = y(t1) = 0;

i 300 = A0 + B0 (1<)

i (2(1))y(t) + pu(2(t))v(t) =0 (t € T),
where A(t) := fo(Z(t)), B(t) == fu(2(t)) (t € T).

e For all (x,u) € 7 let My(x,u) denote the set
of all (Ao,p, i) € R x X x U, such that Ay >
0/\0+|P|+|N|7é , p(t) = —HZ(t, Ao), and

Hy(t,Ao) = 0 (t € T), where H(t,Ay) denotes

H(xz(t), p(t),

#(t), Ao), and consider the following
sets:

A/-\

&1 = (e pop) €2 % X x Uy | (2,u) € D)

and (1,p,p) € My(z,u)}
Hi={(z,u,p,p) € Z x X xUy |
J1((x,u); (y,v)) > 0 for all (y,v) € Yi(x,u)}

where, for all (y,v) € Z,

Dt ulit ) = [ 20 ate), o)
and, for all (t,y,v) € T x R" x R™,
—[(y, Hoa(t, )y) +

2y, Hou(t, 1)v) + (v, Huu(t, 1)0)]
where H (¢, 1) denotes H(&(t), p(t), p(t), 1).

20 (t,y,v) ==

e A process (z,u) will be said to be normal to
P(A, f, 1) if, given (p, n) € X X Uy such that, for
allt €T,

p(t) = —A"()p(t) + 5 (2(2))p(t)
[ = —HZ(Z(1), p(t), p(t),0) ]
0=B"(t)p(t) — @n(Z(t)u(t)
[ = H(2(t), p(t), p(1),0) ]
then p = 0. In this event, by Note 3.3, also 4 = 0.

Note that, if (x,u) is normal to P(A, f,I) and
(Ao, p, ) € My(x,u), then Ag # 0.

3.5 Note: Let (z,u) € 7 and suppose that, given
(p, 1t) € X x Uy such that, for all t € T,

i (1) = — A" (Op(t) + ¢ (E0)a(0);
ii. p*(t)B(t)h = 0 for all h € R™

@u(j(t))h =0,

necessarily p = 0.

P(A, f,1).

3.6 Lemma: Consider problem P(B, 1, f) given
in the proof of Theorem 3.1 and suppose (xy, ug)
is normal to P(A, f,I). Then (xg,up) is normal
to P(B, f, ).

Proof: We want to prove that p = 0 is the only
solution of

satisfying

Then (x,u) is normal to

(teT)

= A(t) + B)Us (Z0(t)),

B(t) = fu(i0o(t)) = B(t)Uu(%0(t)).

This follows since, by Note 2.3, the above rela-
tions correspond to

p(t) = —A"(t)p(t) — Ui (To(t))B™ (t)p(t)
—A"()p(t) + ¢ (To(t))p(?)
and
0 = Ug(&olt)) B (t)p(t)

= B*(t)p(t) — ¢ (Z0())pu(t)

where pu(t) is equal to

[ou(Z0 (1) 7 (Fo ()] pu (0 (1)) B (1)p(L).

Thus the normality of (zg,ug) to P(A, f, I) im-
plies that p = 0.1

We are now in a position to establish first
and second order conditions for the problem with
mixed equality constraints.

3.7 Theorem: Suppose (x,u) solves P(A, f, ).
Then Mi(z,u) # 0. If (z,u) is normal to
P(A, f,I) then there exists a unique (p,u) €

X x U, such that (z,u,p, i) € &. Moreover,
($a U,p,/,t) € 7-[1~
Proof: Suppose (g, ug) solves P(A, f,1). By

Theorem 3.1, Mj(zg,ug) # B. Let (Ag,p,pu) €
M (xg,up) and suppose (zg,ug) is normal to
P(A, f,I). This implies that Ay # 0 and, if
(Ao, q,v) € My(xg, ug) then r := p — ¢ satisfies

H(t) = AT ()r(t) + ¢z (2o(1)) [1(t) — v (1)]

0= B*(1)r(t) — 3 (2o(0) [(t) = v(0)]
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implying that p = ¢ and ¢ = v.
Let (p, ) € X x Uy be the unique pair such
that (zg, ug,p, ) € &1 and define

K(x,u) = (p(t1),&1) — (p(to), o) +

/t (2 (), u()dt ((v,u) € 2)
where, for all (t,z,u) € T x R" x R™,
F(t, e, u) = Lt,z,u) — (p), f(t,x,u)) +

(), o(t, 2, u)) = (p(t), z).
Observe that
F(t’ Ty u) = _H(ta L, u,p(t),ﬂ(t), 1) - <p(t), $>
and, if (z,u) € Zc(A, f), then K(z,u) = I(z,u).
Let (y,v) € Y1 (2o, ug). By Note 2.3 we have
U (20(t))y(t) + Uu(2o(t))v(t) = v(t) —

Pu(@o(t) D) ]pe (To(t)y(t) + pul@o(t))v(t)]
where D(t) = [pu(Zo(t))e}(Z0(t))]~. But the
right-hand expression equals v(¢) and, therefore,

u(t) = Al)y(t) + B

We conclude that (y,v) € Yo(zg, ug) with respect
to P(B,f,f). Also, by Lemma 3.6, (g, ug) is
normal to P(B, f, f) Therefore, by Lemma 1.4,
there exist § > 0 and a one-parameter family
(z(-,€),u(-,€)) € Ze(B, f) (|e] < ) such that

i 2(,0) = ao(t), u(t,0) = up(t) (t €T).

. 2:(¢,0) = y(t), u.(t,0) =o(t) t€T).
Set z(t,€) := z(t,€), u(t,e) == U(t, (L, €), u(t, €)).
Clearly (z(-,€),u(-,€)) € Zc (A, f). Let

g(€) = K(x(- €),ul-,€)) = I(x(:,€), ul, €)).
Thus g(€) > g(0) (|¢| < ). Since
ety €) = Up (L, #(1, ), ult, €))ie(t, €) +
Ua(t, (L, €), alt, €))ie(t, )
we have

ue(t,0) = Us(Zo(t))y(t) + Uu(Zo(t))v(t)
= v(t)

and, therefore,

0 g"(0) = K" ((z0, uwo); (y,v))

Ji((z0, wo); (y,v)). 1

A
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