Mixed Equality Constraints in Optimal Control

JAVIER F ROSENBLUETH

Department of Mathematical and Numerical Methods National Autonomous University of Mexico IIMAS–UNAM, Apartado Postal 20-726, México DF 01000 MEXICO jfrl@servidor.unam.mx

Abstract: This paper concerns a derivation of second order necessary conditions for a fixedendpoint control problem of Lagrange involving mixed equality constraints. These conditions are obtained by means of an implicit function theorem approach applied to the corresponding conditions for a control problem without constraints.

Key-Words: Optimal control, mixed equality constraints, second order necessary conditions, normality.

1 Introduction

According to Gilbert and Bernstein [1], mathematical rigorous treatments of second order necessary conditions for problems in optimal control seem to be limited. In their paper, two widely quoted works due to Hestenes [2] and Warga [3] are mentioned and the main results obtained in [1] are compared with those references.

Hestenes, whose work is the earliest, considered a fairly general optimal control problem but, quoting [1], made the standard assumption that the control set is open. The aim of this paper is to show how the necessary conditions obtained in [2] for such an unconstrained problem can be used to derive such conditions for problems with mixed equality constraints. The approach is based on a uniform implicit function theorem established precisely in [2].

Let us begin by stating the problem we shall be concerned with together with well-known first order necessary conditions. The results of this section are taken up from [2].

Suppose we are given an interval $T := [t_0, t_1]$ in **R**, two points ξ_0 , ξ_1 in \mathbf{R}^n , a set \mathcal{A} in $T \times \mathbf{R}^n \times \mathbf{R}^m$, and functions L and f mapping $T \times \mathbf{R}^n \times \mathbf{R}^m$ to **R** and \mathbf{R}^n respectively.

Denote by X the space of piecewise C^1 functions mapping T to \mathbf{R}^n , by \mathcal{U} the space of piecewise continuous functions mapping T to \mathbf{R}^m , set $Z := X \times \mathcal{U}$,

 $Z(\mathcal{A}) := \{ (x, u) \in Z \mid (t, x(t), u(t)) \in \mathcal{A} \ (t \in T) \},$ $D(f) := \{ (x, u) \in Z \mid \dot{x}(t) = f(t, x(t), u(t)) \\ (t \in T) \},$ $Z_e(\mathcal{A}, f) := \{ (x, u) \in Z(\mathcal{A}) \cap D(f) \mid \\ x(t_0) = \xi_0, \ x(t_1) = \xi_1 \},$

and consider the functional $I: Z \to \mathbf{R}$ given by $I(x, u) := \int_{t_0}^{t_1} L(t, x(t), u(t)) dt$ $((x, u) \in Z)$. The problem we shall deal with, which we label $P(\mathcal{A}, f, I)$, is that of minimizing I over $Z_e(\mathcal{A}, f)$.

Elements of Z will be called *processes*, and a process (x, u) solves $P(\mathcal{A}, f, I)$ if $(x, u) \in Z_e(\mathcal{A}, f)$ and $I(x, u) \leq I(y, v)$ for all $(y, v) \in Z_e(\mathcal{A}, f)$.

For any $(x, u) \in Z$ we shall use the notation $(\tilde{x}(t))$ to represent (t, x(t), u(t)), and "*' denotes transpose.

Assumptions

A. The functions L, f and their partial derivatives with respect to x are continuous, and \mathcal{A} is *admissible* in the sense that, for each $(s, y, v) \in \mathcal{A}$, there exist and $u: [s - \delta, s + \delta] \rightarrow \mathbf{R}^m$ continuous such that u(s) = v and $(t, x, u(t)) \in \mathcal{A}$ for all $(t, x) \in T \times \mathbf{R}^n$ such that $|(t, x) - (s, y)| < \delta$.

B. The functions L, f are C^2 and \mathcal{A} is (relatively) open.

For all (t, x, u, p, λ) in $T \times \mathbf{R}^n \times \mathbf{R}^m \times \mathbf{R}^n \times \mathbf{R}$ let $H(t, x, u, p, \lambda) := \langle p, f(t, x, u) \rangle - \lambda L(t, x, u).$

1.1 Theorem: Assume (A) holds and (x_0, u_0) solves $P(\mathcal{A}, f, I)$. Then there exist $\lambda_0 \geq 0$ and $p \in X$, not both zero, such that

a. $\dot{p}(t) = -H_x^*(\tilde{x}_0(t), p(t), \lambda_0)$ on every interval of continuity of u_0 .

b. $H(t, x_0(t), u, p(t), \lambda_0) \leq H(\tilde{x}_0(t), p(t), \lambda_0)$ for all $(t, u) \in T \times \mathbf{R}^m$ with $(t, x_0(t), u) \in \mathcal{A}$.

1.2 Note: In Theorem 1.1, the function $t \mapsto H(\tilde{x}_0(t), p(t), \lambda_0)$ is continuous on T. Also, if (B) holds, then $H_u(\tilde{x}_0(t), p(t), \lambda_0) = 0$ and $H_{uu}(\tilde{x}_0(t), p(t), \lambda_0) \leq 0$ $(t \in T)$.

In the remaining of this section we assume that (B) holds.

1.3 Definitions:

• For all $(x, u) \in Z$ the set of *admissible variations along* (x, u) will be given by

$$Y_0(x, u) := \{(y, v) \in Z \mid y(t_0) = y(t_1) = 0,$$

$$\dot{y}(t) = A(t)y(t) + B(t)v(t) \ (t \in T)\},$$

where $A(t) := f_x(\tilde{x}(t)), B(t) := f_u(\tilde{x}(t)) \ (t \in T).$

• A process (x, u) will be said to be *normal* to $P(\mathcal{A}, f, I)$ if the equations

$$\dot{p}(t) = -A^*(t)p(t) \quad [= -H^*_x(\tilde{x}(t), p(t), 0)]$$

$$0 = B^*(t)p(t) \quad [= H^*_u(\tilde{x}(t), p(t), 0)]$$

have no nonnull solution p on T.

• For all $(x, u) \in Z$ let $M_0(x, u)$ denote the set of all $(\lambda_0, p) \in \mathbf{R} \times X$ such that $\lambda_0 \geq 0$, $\lambda_0 + |p| \neq 0$, $\dot{p}(t) = -H_x^*(t, \lambda_0)$, and $H_u(t, \lambda_0) = 0$ $(t \in T)$, where $H(t, \lambda_0)$ denotes $H(\tilde{x}(t), p(t), \lambda_0)$, and consider the following sets:

$$\mathcal{E}_{0} := \{ (x, u, p) \in Z \times X \mid (x, u) \in D(f) \\ \text{and} \ (1, p) \in M_{0}(x, u) \} \\ \mathcal{H}_{0} := \{ (x, u, p) \in Z \times X \mid J_{0}((x, u); (y, v)) \ge 0 \\ \text{for all} \ (y, v) \in Y_{0}(x, u) \}$$

where, for all $(y, v) \in Z$,

$$J_0((x, u); (y, v)) = \int_{t_0}^{t_1} 2\Omega_0(t, y(t), v(t)) dt$$

and, for all $(t, y, v) \in T \times \mathbf{R}^n \times \mathbf{R}^m$,

$$2\Omega_0(t, y, v) := -\left[\langle y, H_{xx}(t, 1)y \rangle + 2\langle y, H_{xu}(t, 1)v \rangle + \langle v, H_{uu}(t, 1)v \rangle \right]$$

where H(t, 1) denotes $H(\tilde{x}(t), p(t), 1)$.

1.4 Lemma: Suppose $(x_0, u_0) \in Z_e(\mathcal{A}, f)$ is normal to $P(\mathcal{A}, f, I)$ and $(y, v) \in Y_0(x_0, u_0)$. Then there exist $\delta > 0$ and a one-parameter family $(x(\cdot, \epsilon), u(\cdot, \epsilon)) \in Z_e(\mathcal{A}, f) \ (|\epsilon| < \delta)$ such that

i.
$$x(t, 0) = x_0(t), u(t, 0) = u_0(t) \ (t \in T).$$

ii. $x_{\epsilon}(t, 0) = y(t), u_{\epsilon}(t, 0) = v(t) \ (t \in T).$

The following result summarizes in a succinct way first and second order necessary conditions for problem $P(\mathcal{A}, f, I)$ under assumption (B). We provide a simple proof, similar to the one given in [2], based on the results quoted above.

1.5 Theorem: Suppose (x, u) solves $P(\mathcal{A}, f, I)$. Then $M_0(x, u) \neq \emptyset$. If (x, u) is normal to $P(\mathcal{A}, f, I)$ then there exists a unique $p \in X$ such that $(x, u, p) \in \mathcal{E}_0$. Moreover, $(x, u, p) \in \mathcal{H}_0$.

Proof: Suppose (x_0, u_0) solves $P(\mathcal{A}, f, I)$. By Theorem 1.1 and Note 1.2, $M_0(x_0, u_0) \neq \emptyset$. Let $(\lambda_0, p) \in M_0(x_0, u_0)$ and suppose (x_0, u_0) is normal to $P(\mathcal{A}, f, I)$. This implies that $\lambda_0 \neq 0$ and, if $(\lambda_0, q) \in M_0(x_0, u_0)$, then r := p - q satisfies $\dot{r}(t) = -A^*(t)r(t), 0 = B^*(t)r(t)$ $(t \in T)$, implying that $p \equiv q$. Clearly we can choose $\lambda_0 = 1$ since $(1, p/\lambda_0) \in M_0(x_0, u_0)$. Suppose therefore that $(x_0, u_0, p) \in \mathcal{E}_0$. To show that $(x_0, u_0, p) \in \mathcal{H}_0$, define

$$\begin{split} K(x,u) &:= \langle p(t_1), \xi_1 \rangle - \langle p(t_0), \xi_0 \rangle + \\ \int_{t_0}^{t_1} F(t, x(t), u(t)) dt \qquad ((x, u) \in Z) \end{split}$$

where, for all $(t, x, u) \in T \times \mathbf{R}^n \times \mathbf{R}^m$,

$$F(t, x, u) = L(t, x, u) - \langle p(t), f(t, x, u) \rangle - \langle p(t), x \rangle.$$

Observe that

$$F(t, x, u) = -H(t, x, u, p(t), 1) - \langle \dot{p}(t), x \rangle$$

and, if $(x, u) \in Z_e(\mathcal{A}, f)$, then K(x, u) = I(x, u). Let $(y, v) \in Y_0(x_0, u_0)$ and let $(x(\cdot, \epsilon), u(\cdot, \epsilon)) \in Z_e(\mathcal{A}, f)$ $(|\epsilon| < \delta)$ be a one-parameter family satisfying Lemma 1.4. Hence

$$g(\epsilon) := K(x(\cdot, \epsilon), u(\cdot, \epsilon)) = I(x(\cdot, \epsilon), u(\cdot, \epsilon))$$

satisfies $g(\epsilon) \geq g(0) = K(x_0, u_0) = I(x_0, u_0)$ for all $|\epsilon| < \delta$. Note that $F_x(\tilde{x}_0(t)) = 0$ and $F_u(\tilde{x}_0(t)) = 0$ and, therefore,

$$0 \leq g''(0) = K''((x_0, u_0); (y, v)) = J_0((x_0, u_0); (y, v)). \blacksquare$$

2 Auxiliary results

In this section we state three results (see [2] for details) which play a fundamental role in the deriviation of second order conditions for problem $P(\mathcal{A}, f, I)$ when \mathcal{A} is defined in terms of mixed equality constraints.

2.1 Theorem (Implicit function): Let $f: A \to \mathbf{R}^n$ where $A \subset \mathbf{R}^m \times \mathbf{R}^n$ is open. Suppose f and $f_x(t, x)$ are continuous on A and there exist $T_0 \subset \mathbf{R}^m$ compact and $x_0: T_0 \to \mathbf{R}^n$ continuous such that, for all $t \in T_0$,

i. $(t, x_0(t)) \in A$.

ii. $f(t, x_0(t)) = 0$ and $|f_x(t, x_0(t))| \neq 0$.

Then there exist T neighborhood of T_0 , $\epsilon > 0$ and $x: T \to \mathbf{R}^n$ continuous, such that

a. $x(t) = x_0(t)$ for all $t \in T_0$. **b.** f(t, x(t)) = 0 for all $t \in T$. **c.** $(t \in T, f(t, x) = 0$ and $|x - x(t)| < \epsilon) \Rightarrow$ x = x(t). **d.** $f \in C^m(A) \Rightarrow x \in C^m(T)$.

2.2 Lemma: Let φ be a C^1 function mapping $\mathbf{R}^n \times \mathbf{R}^m$ to \mathbf{R}^q . Let

$$S := \{ (x, u) \in \mathbf{R}^n \times \mathbf{R}^m \mid \varphi(x, u) = 0 \}$$

and suppose the matrix $\varphi_u(x, u)$ has rank q on S. Then there exist a neighborhood \tilde{S} of S and a continuous function $U: \tilde{S} \to \mathbf{R}^m$ such that

a. $(x, U(x, u)) \in S$ for all $(x, u) \in \tilde{S}$.

b. U(x, u) = u for all $(x, u) \in S$.

If φ is of class C^r then U can be chosen to be of class C^r on \tilde{S} .

Proof: Let $h: \mathbf{R}^n \times \mathbf{R}^m \times \mathbf{R}^q \to \mathbf{R}^q$ be given by $h(x, u, b) := \varphi(x, u + \varphi_u^*(x, u)b)$. We have hand h_b continuous on $\mathbf{R}^n \times \mathbf{R}^m \times \mathbf{R}^q$ and, for all $(x, u) \in S, h(x, u, 0) = 0$ and

$$|h_b(x, u, 0)| = |\varphi_u(x, u)\varphi_u^*(x, u)| \neq 0.$$

Suppose first that $S \subset \mathbf{R}^n \times \mathbf{R}^m$ is compact. By Theorem 2.1 there exist \tilde{S} neighborhood of S, $\epsilon > 0$ and $B: \tilde{S} \to \mathbf{R}^q$ continuous, such that

a. B(x, u) = 0 for all $(x, u) \in S$.

b. h(x, u, B(x, u)) = 0 for all $(x, u) \in \tilde{S}$.

c. $((x, u) \in \tilde{S}, h(x, u, b) = 0 \text{ and } |b - B(x, u)| < \epsilon) \Rightarrow b = B(x, u).$ **d.** $h \in C^r \Rightarrow B \in C^r(\tilde{S})$

d.
$$h \in C' \Rightarrow B \in C'$$
 (S

Let $U(x, u) = u + \varphi_u^*(x, u)B(x, u)$ for all $(x, u) \in \tilde{S}$. Then U satisfies the required properties. For the case S not compact and the fact that U can be chosen to be of class C^r on \tilde{S} , we refer to Hestenes' book [2].

2.3 Note: Observe that the function $B: \tilde{S} \to \mathbf{R}^q$ satisfies

$$B'(x, u) = -(h_b(x, u, 0))^{-1}h_{x, u}(x, u, 0)$$

for all $(x, u) \in S$ and therefore, if $D(x, u) := [\varphi_u(x, u)\varphi_u^*(x, u)]^{-1}$, then

$$B_x(x, u) = -D(x, u)\varphi_x(x, u),$$
$$B_u(x, u) = -D(x, u)\varphi_u(x, u)$$

for all $(x, u) \in S$. Hence $U: \tilde{S} \to \mathbf{R}^m$ defined by $U(x, u) = u + \varphi_u^*(x, u) B(x, u)$ satisfies, for any $(x, u) \in S$,

$$U_x(x, u) = -\varphi_u^*(x, u)D(x, u)\varphi_x(x, u),$$
$$U_u(x, u) = I - \varphi_u^*(x, u)D(x, u)\varphi_u(x, u).$$

To state the last auxiliary result we shall need, suppose we are given an interval T = [a, b] in **R** and functions f and g mapping $T \times \mathbf{R}^m$ to **R** and \mathbf{R}^q respectively, with f, g continuous and having continuous partial derivatives with respect to u. Let

$$S := \{ (t, u) \in T \times \mathbf{R}^m \mid g(t, u) = 0 \}$$

and suppose the matrix $g_u(t, u)$ has rank q on S. Denote by \mathcal{U} , as in Section 1, the space of piecewise continuous functions mapping T to \mathbf{R}^m and let

$$\mathcal{U}(S) := \{ u \in \mathcal{U} \mid (t, u(t)) \in S \ (t \in T) \}.$$

2.4 Lemma: Suppose $u_0 \in \mathcal{U}(S)$ is such that $f(t, u_0(t)) \leq f(t, u)$ for all $t \in T$ with $(t, u) \in S$. Then there exists a unique $\mu: T \to \mathbf{R}^q$ such that, if

$$F(t, u) := f(t, u) + \langle \mu(t), g(t, u) \rangle$$

for all $(t, u) \in T \times \mathbf{R}^m$, then $F_u(t, u_0(t)) = 0$ $(t \in T)$. Moreover, $\langle h, F_{uu}(t, u_0(t))h \rangle \geq 0$ for all $h \in \mathbf{R}^m$ such that $g_u(t, u_0(t))h = 0$. The function μ is piecewise continuous on T and continuous at each point of continuity of u_0 .

3 Mixed equality constraints

Consider problem $P(\mathcal{A}, f, I)$ of Section 1. Assume L, f are C^2 and

$$\mathcal{A} = \{(t, x, u) \in T \times \mathbf{R}^n \times \mathbf{R}^m \mid \varphi(t, x, u) = 0\}$$

where $\varphi: T \times \mathbf{R}^n \times \mathbf{R}^m \to \mathbf{R}^q$ is of class C^2 and the matrix $\varphi_u(t, x, u)$ has rank q on \mathcal{A} . Denote by \mathcal{U}_q the space of piecewise continuous functions mapping T to \mathbf{R}^q .

For all $(t, x, u, p, \mu, \lambda)$ in $T \times \mathbf{R}^n \times \mathbf{R}^m \times \mathbf{R}^n \times \mathbf{R}^q \times \mathbf{R}$ let

$$H(t, x, u, p, \mu, \lambda) := \langle p, f(t, x, u) \rangle -$$

$$\lambda L(t, x, u) - \langle \mu, \varphi(t, x, u) \rangle.$$

Let us begin by showing how first order necessary conditions for this constrained problem can be derived from those for the unconstained one stated in Section 1.

3.1 Theorem: If (x_0, u_0) solves $P(\mathcal{A}, f, I)$, then there exist $\lambda_0 \geq 0$, $p \in X$, and $\mu \in \mathcal{U}_q$ continuous on each interval of continuity of u_0 , not vanishing simultaneously on T, such that

a. $\dot{p}(t) = -H_x^*(t, \lambda_0)$ and $H_u(t, \lambda_0) = 0$ on every interval of continuity of u_0 .

b. $H(t, x_0(t), u, p(t), \mu(t), \lambda_0) \leq H(t, \lambda_0)$ for all $(t, u) \in T \times \mathbf{R}^m$ with $(t, x_0(t), u) \in \mathcal{A}$ where $H(t, \lambda_0)$ denotes $H(\tilde{x}_0(t), p(t), \mu(t), \lambda_0)$.

Proof: By Lemma 2.2 there exist a neighborhood \mathcal{B} of \mathcal{A} and a C^2 function $U: \mathcal{B} \to \mathbb{R}^m$ such that $(t, x, U(t, x, u)) \in \mathcal{A}$ for all $(t, x, u) \in \mathcal{B}$, and U(t, x, u) = u for all $(t, x, u) \in \mathcal{A}$. Set

$$\begin{split} \hat{f}(t,x,u) &:= f(t,x,U(t,x,u)), \\ \hat{L}(t,x,u) &:= L(t,x,U(t,x,u)) \end{split}$$

for all $(t, x, u) \in \mathcal{B}$, and

$$\hat{I}(x, u) := \int_{t_0}^{t_1} \hat{L}(t, x(t), u(t)) dt$$

for all $(x, u) \in Z(\mathcal{B})$. Let us prove that (x_0, u_0) solves $P(\mathcal{B}, \hat{f}, \hat{I})$, i.e.,

i. $(x_0, u_0) \in Z_e(\mathcal{B}, \hat{f})$.

ii. $\hat{I}(x_0, u_0) \leq \hat{I}(\hat{x}, \hat{u})$ for all $(\hat{x}, \hat{u}) \in Z_e(\mathcal{B}, \hat{f})$. Since (x_0, u_0) solves $P(\mathcal{A}, f, I)$ we have $(x_0, u_0) \in Z_e(\mathcal{A}, f)$ and $I(x_0, u_0) \leq I(x, u)$ for all $(x, u) \in Z_e(\mathcal{A}, f)$. Hence $(t, x_0(t), u_0(t)) \in \mathcal{A} \subset \mathcal{B}$ $(t \in T)$, $\dot{x}_0(t) = \hat{f}(t, x_0(t), u_0(t))$, and so (i) holds. To prove (ii) let $(\hat{x}, \hat{u}) \in Z_e(\mathcal{B}, \hat{f})$ and define

$$x(t) := \hat{x}(t), \ u(t) := U(t, \hat{x}(t), \hat{u}(t)) \quad (t \in T).$$

Then $(t, x(t), u(t)) \in \mathcal{A}$, $\dot{x}(t) = f(t, x(t), u(t))$ $(t \in T)$, and so $(x, u) \in Z_e(\mathcal{A}, f)$. Also $I(x, u) = \hat{I}(\hat{x}, \hat{u})$ and $\hat{I}(x_0, u_0) = I(x_0, u_0)$ and so (ii) holds.

Now, by Theorem 1.1 applied to (x_0, u_0) with respect to $P(\mathcal{B}, \hat{f}, \hat{I})$, there exist $\lambda_0 \geq 0$ and $p \in X$, not both zero, such that if

$$\hat{H}(t,x,u) := \langle p(t), \hat{f}(t,x,u) \rangle - \lambda_0 \hat{L}(t,x,u)$$

for all $(t, x, u) \in \mathcal{B}$, then

a. $p(t) = -\hat{H}_x^*(\tilde{x}_0(t))$ on every interval of continuity of u_0 .

b. $\hat{H}(t, x_0(t), u) \leq \hat{H}(\tilde{x}_0(t))$ for all $(t, u) \in T \times \mathbf{R}^m$ with $(t, x_0(t), u) \in \mathcal{B}$.

Define

$$G(t, x, u) := \langle p(t), f(t, x, u) \rangle - \lambda_0 L(t, x, u)$$

so that H(t, x, u) = G(t, x, U(t, x, u)) for all $(t, x, u) \in \mathcal{B}$. Since U(t, x, u) = u for all $(t, x, u) \in \mathcal{A}$, it follows from (b) that

$$G(t, x_0(t), u) \le G(\tilde{x}_0(t))$$

for all $(t, u) \in T \times \mathbf{R}^m$ with $(t, x_0(t), u) \in \mathcal{A}$. Let $g(t, u) := \varphi(t, x_0(t), u)$ and $h(t, u) := -G(t, x_0(t), u)$ for all $(t, u) \in T \times \mathbf{R}^m$ and set

$$S := \{(t, u) \in T \times \mathbf{R}^m \mid g(t, u) = 0\}$$

Since $h(t, u_0(t)) \leq h(t, u)$ for all $(t, u) \in S$, by Lemma 2.4 there exists a unique $\mu \in \mathcal{U}_q$ such that, if we set

$$F(t, u) := h(t, u) + \langle \mu(t), g(t, u) \rangle$$

then $F_u(t, u_0(t)) = 0$. In other words, if

$$\hat{G}(t,x,u) := G(t,x,u) - \langle \mu(t), arphi(t,x,u)
angle,$$

so that $\tilde{G}(t, x_0(t), u) = -F(t, u)$, then

$$0 = \hat{G}_u(\tilde{x}_0(t)) = G_u(\tilde{x}_0(t)) - \mu^*(t)\varphi_u(\tilde{x}_0(t)).$$

The function μ is continuous on each interval of continuity of u_0 . Since, for all $(t, x, u) \in \mathcal{B}$, we have $(t, x, U(t, x, u)) \in \mathcal{A}$ and $\hat{H}(t, x, u) =$ G(t, x, U(t, x, u)), it follows that

$$\hat{H}(t,x,u)=\hat{G}(t,x,U(t,x,u))$$
 $((t,x,u)\in\mathcal{B}).$

Consequently,

$$\hat{H}_x(\tilde{x}_0(t)) = \hat{G}_x(\tilde{x}_0(t)) + \hat{G}_u(\tilde{x}_0(t))U_x(\tilde{x}_0(t)) = \hat{G}_x(\tilde{x}_0(t)).$$

Since $\hat{G}(t, x, u) = H(t, x, u, p(t), \mu(t), \lambda_0)$, the conditions of the theorem hold.

3.2 Corollary: If (x_0, u_0) solves $P(\mathcal{A}, f, I)$ and (p, μ, λ_0) is as in Theorem 3.1, then

$$\langle h, H_{uu}(\tilde{x}_0(t), p(t), \mu(t), \lambda_0)h \rangle \leq 0$$

for all $h \in \mathbf{R}^m$ such that $\varphi_u(\tilde{x}_0(t))h = 0$.

3.3 Note: Suppose that, for some $(x, u) \in Z$, $p \in X, \lambda \in \mathbf{R}$ and a function $\mu: T \to \mathbf{R}^q$, we have

$$0 = H_u(\tilde{x}(t), p(t), \mu(t), \lambda)$$
$$[= p^*(t) f_u(\tilde{x}(t)) - \lambda L_u(\tilde{x}(t)) - \mu^*(t) \varphi_u(\tilde{x}(t))]$$

for all $t \in T$. Then $\mu \in \mathcal{U}_q$ and

$$\mu^*(t) = \{p^*(t)f_u(\tilde{x}(t)) - \lambda L_u(\tilde{x}(t))\}\varphi^*_u(\tilde{x}(t))D(t)$$

for all $t \in T$, where $D(t) = [\varphi_u(\tilde{x}(t))\varphi_u^*(\tilde{x}(t))]^{-1}$.

3.4 Definitions:

• For all $(x, u) \in Z$ define the set $Y_1(x, u)$ of admissible variations along (x, u) as the set of all $(y, v) \in Z$ satisfying

i. $y(t_0) = y(t_1) = 0;$ ii. $\dot{y}(t) = A(t)y(t) + B(t)v(t) \ (t \in T);$ iii. $\varphi_x(\tilde{x}(t))y(t) + \varphi_u(\tilde{x}(t))v(t) = 0 \ (t \in T),$ where $A(t) := f_x(\tilde{x}(t)), B(t) := f_u(\tilde{x}(t)) \ (t \in T).$

• For all $(x, u) \in \mathbb{Z}$ let $M_1(x, u)$ denote the set of all $(\lambda_0, p, \mu) \in \mathbf{R} \times X \times \mathcal{U}_q$ such that $\lambda_0 \geq 0$, $\lambda_0 + |p| + |\mu| \neq 0$, $\dot{p}(t) = -H_x^*(t, \lambda_0)$, and $H_u(t, \lambda_0) = 0$ ($t \in T$), where $H(t, \lambda_0)$ denotes $H(\tilde{x}(t), p(t), \mu(t), \lambda_0)$, and consider the following sets:

$$\begin{split} \mathcal{E}_1 &:= \{(x, u, p, \mu) \in Z \times X \times \mathcal{U}_q \mid (x, u) \in D(f) \\ & \text{and } (1, p, \mu) \in M_1(x, u) \} \\ & \mathcal{H}_1 &:= \{(x, u, p, \mu) \in Z \times X \times \mathcal{U}_q \mid \end{split}$$

 $J_1((x, u); (y, v)) \ge 0 \text{ for all } (y, v) \in Y_1(x, u)\}$ where, for all $(y, v) \in Z$,

 $J_1((x, u); (y, v)) = \int_{t_0}^{t_1} 2\Omega_1(t, y(t), v(t)) dt$

and, for all $(t, y, v) \in T \times \mathbf{R}^n \times \mathbf{R}^m$,

$$2\Omega_1(t, y, v) := -\left[\langle y, H_{xx}(t, 1)y \rangle + 2\langle y, H_{xu}(t, 1)v \rangle + \langle v, H_{uu}(t, 1)v \rangle\right]$$

where H(t, 1) denotes $H(\tilde{x}(t), p(t), \mu(t), 1)$.

• A process (x, u) will be said to be *normal* to $P(\mathcal{A}, f, I)$ if, given $(p, \mu) \in X \times \mathcal{U}_q$ such that, for all $t \in T$,

$$\dot{p}(t) = -A^{*}(t)p(t) + \varphi_{x}^{*}(\tilde{x}(t))\mu(t)$$

$$[= -H_{x}^{*}(\tilde{x}(t), p(t), \mu(t), 0)]$$

$$0 = B^{*}(t)p(t) - \varphi_{u}^{*}(\tilde{x}(t))\mu(t)$$

$$[= H_{u}^{*}(\tilde{x}(t), p(t), \mu(t), 0)]$$

then $p \equiv 0$. In this event, by Note 3.3, also $\mu \equiv 0$. Note that, if (x, u) is normal to $P(\mathcal{A}, f, I)$ and $(\lambda_0, p, \mu) \in M_1(x, u)$, then $\lambda_0 \neq 0$.

3.5 Note: Let $(x, u) \in Z$ and suppose that, given $(p, \mu) \in X \times \mathcal{U}_q$ such that, for all $t \in T$,

i. $p(t) = -A^*(t)p(t) + \varphi_x^*(\tilde{x}(t))\mu(t);$

ii. $p^*(t)B(t)h = 0$ for all $h \in \mathbf{R}^m$ satisfying $\varphi_u(\tilde{x}(t))h = 0$,

necessarily $p \equiv 0$. Then (x, u) is normal to $P(\mathcal{A}, f, I)$.

3.6 Lemma: Consider problem $P(\mathcal{B}, \hat{f}, \hat{I})$ given in the proof of Theorem 3.1 and suppose (x_0, u_0) is normal to $P(\mathcal{A}, f, I)$. Then (x_0, u_0) is normal to $P(\mathcal{B}, \hat{f}, \hat{I})$.

Proof: We want to prove that $p \equiv 0$ is the only solution of

$$\dot{p}(t) = -\hat{A}^*(t)p(t), \quad 0 = \hat{B}^*(t)p(t) \qquad (t \in T)$$

where

$$\hat{A}(t) = \hat{f}_x(\tilde{x}_0(t)) = A(t) + B(t)U_x(\tilde{x}_0(t)),$$
$$\hat{B}(t) = \hat{f}_u(\tilde{x}_0(t)) = B(t)U_u(\tilde{x}_0(t)).$$

This follows since, by Note 2.3, the above relations correspond to

$$\dot{p}(t) = -A^*(t)p(t) - U^*_x(\tilde{x}_0(t))B^*(t)p(t) = -A^*(t)p(t) + \varphi^*_x(\tilde{x}_0(t))\mu(t)$$

and

$$0 = U_u^*(\tilde{x}_0(t))B^*(t)p(t) = B^*(t)p(t) - \varphi_u^*(\tilde{x}_0(t))\mu(t)$$

where $\mu(t)$ is equal to

$$[\varphi_u(\tilde{x}_0(t))\varphi_u^*(\tilde{x}_0(t))]^{-1}\varphi_u(\tilde{x}_0(t))B^*(t)p(t).$$

Thus the normality of (x_0, u_0) to $P(\mathcal{A}, f, I)$ implies that $p \equiv 0$.

We are now in a position to establish first and second order conditions for the problem with mixed equality constraints.

3.7 Theorem: Suppose (x, u) solves $P(\mathcal{A}, f, I)$. Then $M_1(x, u) \neq \emptyset$. If (x, u) is normal to $P(\mathcal{A}, f, I)$ then there exists a unique $(p, \mu) \in X \times \mathcal{U}_q$ such that $(x, u, p, \mu) \in \mathcal{E}_1$. Moreover, $(x, u, p, \mu) \in \mathcal{H}_1$.

Proof: Suppose (x_0, u_0) solves $P(\mathcal{A}, f, I)$. By Theorem 3.1, $M_1(x_0, u_0) \neq \emptyset$. Let $(\lambda_0, p, \mu) \in$ $M_1(x_0, u_0)$ and suppose (x_0, u_0) is normal to $P(\mathcal{A}, f, I)$. This implies that $\lambda_0 \neq 0$ and, if $(\lambda_0, q, \nu) \in M_1(x_0, u_0)$ then r := p - q satisfies

$$\dot{r}(t) = -A^*(t)r(t) + \varphi^*_x(\tilde{x}_0(t))[\mu(t) - \nu(t)]$$
$$0 = B^*(t)r(t) - \varphi^*_u(\tilde{x}_0(t))[\mu(t) - \nu(t)]$$

implying that $p \equiv q$ and $\mu \equiv \nu$.

Let $(p, \mu) \in X \times \mathcal{U}_q$ be the unique pair such that $(x_0, u_0, p, \mu) \in \mathcal{E}_1$ and define

$$\begin{split} K(x,u) &:= \langle p(t_1), \xi_1 \rangle - \langle p(t_0), \xi_0 \rangle + \\ \int_{t_0}^{t_1} F(t, x(t), u(t)) dt \quad ((x, u) \in Z) \end{split}$$

where, for all $(t, x, u) \in T \times \mathbf{R}^n \times \mathbf{R}^m$,

$$egin{aligned} F(t,x,u) &:= L(t,x,u) - \langle p(t), f(t,x,u)
angle + \ &\langle \mu(t), arphi(t,x,u)
angle - \langle \dot{p}(t), x
angle. \end{aligned}$$

Observe that

$$F(t, x, u) = -H(t, x, u, p(t), \mu(t), 1) - \langle \dot{p}(t), x \rangle$$

and, if $(x, u) \in Z_e(\mathcal{A}, f)$, then K(x, u) = I(x, u). Let $(y, v) \in Y_1(x_0, u_0)$. By Note 2.3 we have

$$U_{x}(\tilde{x}_{0}(t))y(t) + U_{u}(\tilde{x}_{0}(t))v(t) = v(t) - \varphi_{u}^{*}(\tilde{x}_{0}(t))D(t)[\varphi_{x}(\tilde{x}_{0}(t))y(t) + \varphi_{u}(\tilde{x}_{0}(t))v(t)]$$

where $D(t) = [\varphi_u(\tilde{x}_0(t))\varphi_u^*(\tilde{x}_0(t))]^{-1}$. But the right-hand expression equals v(t) and, therefore,

$$\dot{y}(t) = A(t)y(t) + B(t)v(t) = \hat{A}(t)y(t) + \hat{B}(t)v(t).$$

We conclude that $(y, v) \in Y_0(x_0, u_0)$ with respect to $P(\mathcal{B}, \hat{f}, \hat{I})$. Also, by Lemma 3.6, (x_0, u_0) is normal to $P(\mathcal{B}, \hat{f}, \hat{I})$. Therefore, by Lemma 1.4, there exist $\delta > 0$ and a one-parameter family $(\hat{x}(\cdot, \epsilon), \hat{u}(\cdot, \epsilon)) \in Z_{\epsilon}(\mathcal{B}, \hat{f})$ $(|\epsilon| < \delta)$ such that

i.
$$\hat{x}(t,0) = x_0(t), \ \hat{u}(t,0) = u_0(t) \ (t \in T)$$

ii. $\hat{x}_{\epsilon}(t, 0) = y(t), \ \hat{u}_{\epsilon}(t, 0) = v(t) \ (t \in T).$

Set $x(t,\epsilon) := \hat{x}(t,\epsilon), u(t,\epsilon) := U(t,\hat{x}(t,\epsilon),\hat{u}(t,\epsilon)).$ Clearly $(x(\cdot,\epsilon), u(\cdot,\epsilon)) \in Z_e(\mathcal{A}, f)$. Let

$$g(\epsilon) := K(x(\cdot, \epsilon), u(\cdot, \epsilon)) = I(x(\cdot, \epsilon), u(\cdot, \epsilon)).$$

Thus $g(\epsilon) \ge g(0)$ ($|\epsilon| < \delta$). Since

$$u_{\epsilon}(t,\epsilon) = U_{x}(t,\hat{x}(t,\epsilon),\hat{u}(t,\epsilon))\hat{x}_{\epsilon}(t,\epsilon) +$$

$$-U_{u}(t,\hat{x}(t,\epsilon),\hat{u}(t,\epsilon))\hat{u}_{\epsilon}(t,\epsilon)$$

we have

$$u_{\epsilon}(t,0) = U_{x}(\tilde{x}_{0}(t))y(t) + U_{u}(\tilde{x}_{0}(t))v(t) = v(t)$$

and, therefore,

$$0 \leq g''(0) = K''((x_0, u_0); (y, v)) = J_1((x_0, u_0); (y, v)). \blacksquare$$

References:

- EG Gilbert, DS Bernstein, Second-order necessary conditions in optimal control: accessory-problem results without normality conditions, Journal of Optimization Theory and Applications, Vol 41, No 1, 1983, pp 75-106
- [2] MR Hestenes, Calculus of Variations and Optimal Control Theory, John Wiley, New York, 1966
- [3] J Warga, A second-order Lagrangian condition for restricted control problems, *Journal* of Optimization Theory and Applications, Vol 24, No 3, 1978, pp 475-483