Mixed Equality Constraints in Optimal Control

JAVIER F ROSENBLUETH

Department of Mathematical and Numerical Methods National Autonomous University of Mexico IIMASUNAM Apartado Postal - P MEXICO

jfrances en de la provincia de

Abstract: This paper concerns a derivation of second order necessary conditions for a fixedendpoint control problem of Lagrange involving mixed equality constraints- These conditions are obtained by means of an implicit function theo rem approach applied to the corresponding con ditions for a control problem without constraints.

 $Key-Words:$ Optimal control, mixed equality constraints, second order necessary conditions, normality-

Introduction 1

According to Gilbert and Bernstein [1], mathematical rigorous treatments of second order nec essary conditions for problems in optimal control seem to be limited as the limited-limited-limited-limited-limited-limited-limited-limited-limited-limited-limitedquoted works due to Hestenes $[2]$ and Warga $[3]$ are mentioned and the main results obtained in [1] are compared with those references.

Hestenes, whose work is the earliest, considered a fairly general optimal control problem but quoting $[1]$, made the standard assumption that the control set is open- where it to the paper is to the aim of the aim of the set of the set of this paper is show how the necessary conditions obtained in [2] for such an unconstrained problem can be used to derive such conditions for problems with mixed equality constraints-dependent on the approach is based on the approach a uniform implicit function theorem established precisely in $[2]$

Let us begin by stating the problem we shall be concerned with together with well-known first order necessary conditions-the results of this conditions-the results of this conditions-the results of this conditionssection are taken up from $[2]$.

suppose we are given an interval T \sim 101 M in ${\bf R}$, two points ξ_0 , ξ_1 in ${\bf R}^n$, a set ${\cal A}$ in $T\times {\bf R}^n\times \cdots$ ${\bf R}^m$, and functions L and f mapping $T\times {\bf R}^m\times {\bf R}^m$ to ${\bf R}$ and ${\bf R}^+$ respectively.

Denote by Λ the space of piecewise \mathbb{C}^+ functions mapping T to $\bf R$, by U the space of piecewise continuous functions mapping T to \mathbf{R}^n , set \sim \sim \sim \sim \sim \sim \sim \sim

$$
Z(\mathcal{A}) := \{(x, u) \in Z \mid (t, x(t), u(t)) \in \mathcal{A} \ (t \in T) \},
$$

$$
D(f) := \{(x, u) \in Z \mid x(t) = f(t, x(t), u(t))
$$

$$
(t \in T) \},
$$

$$
Z_e(\mathcal{A}, f) := \{(x, u) \in Z(\mathcal{A}) \cap D(f) \mid
$$

$$
x(t_0) = \xi_0, \; x(t_1) = \xi_1 \},
$$

and consider the functional $I:Z \rightarrow \mathbf{R}$ given by $I(x, u) := \int_{t_0}^{t_1} L(t, x(t), u(t)) dt \, ((x, u) \in Z)$. The problem we shall deal with which we label $P(A, f, I)$, is that of minimizing I over $Z_e(A, f)$.

Elements of Z will be called *processes*, and a process (x, u) solves $P(A, f, I)$ if $(x, u) \in Z_e(\mathcal{A}, f)$ and $I(x, u) \leq I(y, v)$ for all $(y, v) \in Z_e(\mathcal{A}, f)$.

For any $(x, u) \in Z$ we shall use the notation $(x(t))$ to represent $(t, x(t), u(t))$, and denotes transpose-

Assumptions

A. The functions L, f and their partial derivatives with respect to x are continuous, and A is *admissible* in the sense that, for each $(s, y, v) \in \mathcal{A}$, there exist and $u: |s - \delta, s + \delta| \to \mathbf{R}^{\cdots}$ continu- \mathcal{N} and the such that use \mathcal{N} and the such that use \mathcal{N} and the such that \mathcal{N} $(t, x) \in I \times \mathbf{R}$ such that $|(t, x) - (s, y)| \leq \delta$.

B. The functions L, f are C^* and A is trelatively) open.

For all (t, x, u, p, λ) in $T \times \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^n \times \mathbb{R}$. A constant of the contract of the contract

 $\overline{1}$, under and $\overline{1}$ and $\overline{$ solves $P(A, f, I)$. Then there exist $\lambda_0 > 0$ and $p \in X$, not both zero, such that

 $\mathbf{a}, p(t) = -H_x(x_0(t), p(t), \lambda_0)$ on every interval of continuity of u_0 .

b. $H(t, x_0(t), u, p(t), \lambda_0) \leq H(\tilde{x}_0(t), p(t), \lambda_0)$ for all $(t, u) \in T \times \mathbf{R}^m$ with $(t, x_0(t), u) \in A$.

Note-in the function term in the function term in the function term in the function term in the function term i \mathcal{N} by a strategies on T - \mathcal{N} - \mathcal{N} \mathbf{u} is the Huxter parameter of \mathbf{u} $H_{uu}(\tilde{x}_0(t), p(t), \lambda_0) \leq 0 \ (t \in T).$

In the remaining of this section we assume that (B) holds.

1.3 Definitions:

• For all $(x, u) \in Z$ the set of *admissible vari*ations along (x, u) will be given by

$$
Y_0(x, u) := \{ (y, v) \in Z \mid y(t_0) = y(t_1) = 0,
$$

$$
y(t) = A(t)y(t) + B(t)v(t) \quad (t \in T) \},
$$

where τ and τ is a substant of τ and τ is the substant of τ and τ are the substant of τ

• A process (x, u) will be said to be normal to $P(A, f, I)$ if the equations

$$
p(t) = -A^*(t)p(t) \quad [= -H_x^*(\tilde{x}(t), p(t), 0)]
$$

0 = B^*(t)p(t) \quad [= H_u^*(\tilde{x}(t), p(t), 0)]

have no nonnull solution p on T .

• For all $(x, u) \in Z$ let $M_0(x, u)$ denote the set of all $(\lambda_0, p) \in \mathbf{R} \times X$ such that $\lambda_0 > 0$, $\lambda_0 + |p| \neq 0, p(t) \equiv -H_x(t, \lambda_0)$, and $H_y(t, \lambda_0) = 0$ $(t \in T)$, where $H(t, \lambda_0)$ denotes $H(\tilde{x}(t), p(t), \lambda_0)$, and consider the following sets

$$
\mathcal{E}_0 := \{ (x, u, p) \in Z \times X \mid (x, u) \in D(f) \}
$$

and $(1, p) \in M_0(x, u) \}$

$$
\mathcal{H}_0 := \{ (x, u, p) \in Z \times X \mid J_0((x, u); (y, v)) \ge 0 \}
$$

for all $(y, v) \in Y_0(x, u) \}$

where, for all $(y, v) \in Z$.

$$
J_0((x,u);(y,v)) = \int_{t_0}^{t_1} 2\Omega_0(t,y(t),v(t)) dt
$$

and, for all $(t, y, v) \in T \times {\bold R}^m \times {\bold R}^m$,

$$
2\Omega_0(t, y, v) := -[(y, H_{xx}(t, 1)y) +2\langle y, H_{xy}(t, 1)v\rangle + \langle v, H_{uu}(t, 1)v\rangle]
$$

where $H(t, 1)$ denotes $H(\tilde{x}(t), p(t), 1)$.

 Lemma- Suppose x u ZeA f  is normal to $P(A, f, I)$ and $(y, v) \in Y_0(x_0, u_0)$. Then there exist - a one-family parameter family $\mathcal{X} = \{ \mathcal{X} \mid \mathcal{X} \in \mathcal{X} \mid \mathcal{X} \text{ and } \mathcal{X} \text{ and }$

 \cdots in the state of the state of the state \cdots is the state of the state o \cdots . The state of the state \cdots is the state of \cdots

The following result summarizes in a succinct way first and second order necessary conditions for problem PA f I under assumption B- We provide a simple proof, similar to the one given in $\lbrack 2 \rbrack$, based on the results quoted above.

 Theorem- Suppose x u solves PA f I  \mathcal{L} and \mathcal{L} is not use to interest the matrix of \mathcal{L} , and \mathcal{L} is not use to interest the set of \mathcal{L} $P(A, f, I)$ then there exists a unique $p \in X$ such that $(x, u, p) \in \mathcal{E}_0$. Moreover, $(x, u, p) \in \mathcal{H}_0$.

e die gehad van die volleerde waard van die gewone van die solveste solveren van die solverenige van die solve Theorem - and Note - Mx u - Let $(\lambda_0, p) \in M_0(x_0, u_0)$ and suppose (x_0, u_0) is normatrix is a finite function of \mathbb{R}^n . This implies that is a finite function of \mathbb{R}^n if if $\mathcal{M} \subset \mathcal{M}$ is a set of the result of the $res r(t) = -A(t)r(t), \; 0 = B(t)r(t)$ $(t \in I),$ implying that p  q- Clearly we can choose \mathcal{S} . The suppose the matrix of \mathcal{S} is the support of \mathcal{S} . The support of \mathcal{S} \mathbf{v} therefore the show that \mathbf{v} is the set of \mathbf{v} $(x_0, u_0, p) \in \mathcal{H}_0$, define

$$
K(x, u) := \langle p(t_1), \xi_1 \rangle - \langle p(t_0), \xi_0 \rangle +
$$

$$
\int_{t_0}^{t_1} F(t, x(t), u(t)) dt \qquad ((x, u) \in Z)
$$

where, for all $(t, x, u) \in T \times \mathbf{R}^n \times \mathbf{R}^n$,

$$
F(t, x, u) = L(t, x, u) - \langle p(t), f(t, x, u) \rangle - \langle p(t), x \rangle.
$$

$$
F(t, x, u) = -H(t, x, u, p(t), 1) - \langle p(t), x \rangle
$$

and it is the final function of the final function \mathcal{X} and \mathcal{Y} are \mathcal{Y} $\mathcal{L}(\mathcal{U})$ is a value of the contract with $\mathcal{U}(\mathcal{U})$. The contract of the contract \mathbf{b} f and \mathbf{b} f and \mathbf{b} and \mathbf{b} and \mathbf{b} f and \mathbf{b} f and \mathbf{b} isfying Lemma -- Hence

$$
g\left(\epsilon\right)\,:=\,K(x(\cdot\,,\epsilon),u(\cdot\,,\epsilon))=I(x(\cdot\,,\epsilon),u(\cdot\,,\epsilon))
$$

satisfied and the contract of t for all α -form and α and α and α is that α $\mathbf{u} \in \mathbb{R}^n$, we have the function of \mathbf{u}

$$
0 \leq g''(0) = K''((x_0, u_0); (y, v))
$$

= $J_0((x_0, u_0); (y, v)) \cdot \blacksquare$

Auxiliary results

In this section we state three results (see $[2]$ for details which play a fundamental role in the de riviation of second order conditions for problem $P(A, f, I)$ when A is defined in terms of mixed equality constraints.

Theorem Implicit function Γ and Γ are propositions in the contribution of Γ \mathbf{R}^n where $A \subset \mathbf{R}^n \times \mathbf{R}^n$ is open. Suppose f and $f_x(t, x)$ are continuous on A and there exist $T_0 \subset \mathbf{R}^n$ compact and $x_0: T_0 \to \mathbf{R}^n$ continuous such that, for all $t \in T_0$,

 \cdots to the \cdots

is and the state of the state of

Then there exist T neighborhood of T_0 , $\epsilon > 0$ and $x:I\to{\bf K}^+$ continuous, such that

and the state is the state $\mathbf{r} = \mathbf{r}$ for all the state $\mathbf{r} = \mathbf{r}$. The form is a formulate the contribution of the contribution of \mathbf{f} and it is a contract that is a contract of the α \mathbf{x} and $\mathbf{x$ $\mathbf{u} \cdot \boldsymbol{\beta} \in \mathbb{C}^m(A) \Rightarrow x \in \mathbb{C}^m(I).$

 2.2 Lemma: Let φ be a C function mapping $\mathbf{R}^n \times \mathbf{R}^m$ to \mathbf{R}^n . I

$$
S := \{(x, u) \in \mathbf{R}^n \times \mathbf{R}^m \mid \varphi(x, u) = 0\}
$$

and suppose the matrix $\varphi_u(x, u)$ has rank q on S. Then there exist a neighborhood \tilde{S} of S and a continuous function $U : S \to \mathbf{R}^m$ such that

a. $(x, U(x, u)) \in S$ for all $(x, u) \in \tilde{S}$.

b. $U(x, u) = u$ for all $(x, u) \in S$.

If φ is of class C^r then U can be chosen to be of class C^r on S

Proof: Let $h: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^q \to \mathbb{R}^q$ be given by $h(x, u, v) := \varphi(x, u + \varphi_u(x, u)v)$. We have h and h_b continuous on $\mathbf{R}^n \times \mathbf{R}^m \times \mathbf{R}^q$ and, for all x u Shx u  and

$$
|h_b(x, u, 0)| = |\varphi_u(x, u)\varphi_u^*(x, u)| \neq 0.
$$

Suppose first that $S \subset \mathbf{R}^n \times \mathbf{R}^m$ is compact. By **Theorem 2.1** there exist β heighborhood or β , $\epsilon > 0$ and $B: \tilde{S} \to \mathbf{R}^q$ continuous, such that

a Barat and the second second and the second second second and second and second second and second and second s D_1 , $u(x, u, D(x, u)) = 0$ for all $(x, u) \in D$. c $(u, u) \subset D$, $u(x, u, v) = 0$ and $|v - D(u, u)| \setminus$ **d**. $h \in C^r \Rightarrow B \in C^r(\tilde{S})$.

Let $U(x, u) = u + \varphi_u(x, u) B(x, u)$ for all $(x, u) \in$ ω . Then ω satisfies the required properties. For the case S not compact and the fact that U can be chosen to be of class C^r on \tilde{S} , we refer to Hestenes' book [2].

2.3 Note: Observe that the function $B\colon S\to{\mathbf R}^n$ satisfies

$$
B'(x,u)=-(h_b(x,u,0))^{-1}h_{x,u}(x,u,0)
$$

for all $(x, u) \in S$ and therefore, if $D(x, u) :=$ $[\varphi_u(x,u)\varphi_u(x,u)]$, then

$$
B_x(x, u) = -D(x, u)\varphi_x(x, u),
$$

$$
B_u(x, u) = -D(x, u)\varphi_u(x, u)
$$

for all $(x, u) \in S$. Hence $U : S \to \mathbf{R}^{\cdots}$ defined by $U(x, u) = u + \varphi_u(x, u) B(x, u)$ satisfies, for any $(x, u) \in S$,

$$
U_x(x, u) = -\varphi_u^*(x, u)D(x, u)\varphi_x(x, u),
$$

$$
U_u(x, u) = I - \varphi_u^*(x, u)D(x, u)\varphi_u(x, u).
$$

To state the last auxiliary result we shall need suppose we are given an interval T and the support of the and functions f and q mapping $I \times \mathbf{R}$ to $\mathbf R$ and \mathbf{R}^q respectively, with f, g continuous and having continuous partial derivatives with respect to u . Let

$$
S := \{(t, u) \in T \times \mathbf{R}^m \mid g(t, u) = 0\}
$$

and suppose the matrix $g_u(t, u)$ has rank q on S- Denote by U as in Section the space of piecewise continuous functions mapping T to \mathbb{R}^m and let

$$
\mathcal{U}(S) := \{ u \in \mathcal{U} \mid (t, u(t)) \in S \ (t \in T) \}.
$$

 \mathcal{L} . The contract that the suppose $\mathcal{L}(\mathcal{U})$, $\mathcal{L}(\mathcal{U})$, the such that the such that Then there exists a unique $\mu: T \to \mathbf{R}^q$ such that, if

$$
F(t, u) := f(t, u) + \langle \mu(t), g(t, u) \rangle
$$

for all $(t, u) \in T \times \mathbf{R}$, then $F_u(t, u_0(t)) = 0$ $(t \in T)$. Moreover, $\langle h, F_{uu}(t, u_0(t))h \rangle > 0$ for all $h \in \mathbf{R}^m$ such that $g_u(t, u_0(t))h = 0$. The function is piecewise continuous on T and continuous at each point of continuity of u_0 .

- Mixed equality constraints

communication problem in the section of the section of the section of the section of \mathcal{L} L , \overline{I} are C^- and

$$
\mathcal{A} = \{(t, x, u) \in T \times \mathbf{R}^n \times \mathbf{R}^m \mid \varphi(t, x, u) = 0\}
$$

where $\varphi \colon I \times \mathbf{R}^+ \times \mathbf{R}^+ \to \mathbf{R}^+$ is of class C^+ and the matrix \mathbf{r} with \mathbf{r} and \mathbf{r} are \mathbf{r} and \mathbf{r} are \mathbf{r} . The second by \mathcal{U}_q the space of piecewise continuous functions mapping I to \mathbf{R}^n .

For all $(t, x, u, p, \mu, \lambda)$ in $T \times \mathbf{R}^{\top} \times \mathbf{R}^{\top} \times \mathbf{R}^{\top} \times$ ${\bf R}^q \times {\bf R}$ let

$$
H\left(t,x,u,p,\mu,\lambda\right):=\left\langle p,f(t,x,u)\right\rangle\,-
$$

$$
\lambda L(t,x,u)-\langle\mu,\varphi(t,x,u)\rangle.
$$

Let us begin by showing how first order necessary conditions for this constrained problem can be derived from those for the unconstained one stated in Section 1.

 \mathcal{I} . The solves Part is the solves \mathcal{I} in the solves Part is the solves Part in the solves Part is the solves Part in the solves \mathcal{I} there exists a η and μ and μ and μ and μ and μ and μ on each interval of continuity of u_0 , not vanishing simultaneously on T , such that

a. $p(t) = -H_x(t, \lambda_0)$ and $H_u(t, \lambda_0) = 0$ on every interval of continuity of u_0 .

 $\mathbb{P} \to \mathbb{P}$, the verte internal properties of the form \mathbb{P} $(t, u) \in T \times \mathbf{R}^m$ with $(t, x_0(t), u) \in \mathcal{A}$

where the transferred to the control of the second terms of th

Proof By Lemma - there exist a neighbor hood β of $\mathcal A$ and a $\mathbb C^*$ function $\mathcal U:\mathcal B\to \mathbf{R}^m$ such that $(t, x, U(t, x, u)) \in \mathcal{A}$ for all $(t, x, u) \in \mathcal{B}$, and U to all the contract when the set of the set

$$
\begin{aligned} \hat{f}(t,x,u) &\coloneqq f(t,x,U(t,x,u)),\\ \hat{L}(t,x,u) &\coloneqq L(t,x,U(t,x,u)) \end{aligned}
$$

for all $(t, x, u) \in \mathcal{B}$, and

$$
\hat{I}(x,u):=\int_{t_0}^{t_1}\hat{L}(t,x(t),u(t))dt
$$

 \Box is the contract of the contract of \Box and \Box SULVES $1, D, I, I, I, I, E,$

 $1. \{x_0, u_0\} \subset \mathcal{L}_e(D, J).$

ii.
$$
\hat{I}(x_0, u_0) \leq \hat{I}(\hat{x}, \hat{u})
$$
 for all $(\hat{x}, \hat{u}) \in Z_e(\mathcal{B}, \hat{f})$.

Since (x_0, u_0) solves $P(A, f, I)$ we have $(x_0, u_0) \in$ $Z_e(\mathcal{A}, f)$ and $I(x_0, u_0) \leq I(x, u)$ for all $(x, u) \in$ \mathcal{L} . The state of the finite state \mathcal{L} is the state of $x_0(t) = f(t, x_0(t), u_0(t))$, and so (i) notes. To prove (ii) fet $(x, u) \in \mathbb{Z}_e(D, J)$ and define

$$
x(t) := \hat{x}(t), \ u(t) := U(t, \hat{x}(t), \hat{u}(t)) \quad (t \in T).
$$

 \mathcal{L} . Then the transfer that is the state of th τ , the contract of τ , the contract of τ and τ and τ and τ and τ and τ and τ $I(x, u)$ and $I(x_0, u_0) = I(x_0, u_0)$ and so (ii) noids.

now by Theorem - and the place of the field to the second to the second to the second to a second to the second respect to $P(D, J, I)$, there exist $A_0 > 0$ and $p \in I$ X , not both zero, such that if

$$
\hat{H}(t,x,u):=\langle p(t),\hat{f}(t,x,u)\rangle-\lambda_0\hat{L}(t,x,u)
$$

for all $(t, x, u) \in \mathcal{B}$, then

 $\mathbf{a.} \,\, p(\iota) = -H_x(x_0(\iota))$ on every interval of continuity of u_0 .

b. $H(t, x_0(t), u) \leq H(\tilde{x}_0(t))$ for all $(t, u) \in T \times$ \mathbf{R}^m with $(t, x_0(t), u) \in \mathcal{B}$.

Define

$$
G(t,x,u):=\langle p(t),f(t,x,u)\rangle-\lambda_0L(t,x,u)
$$

so that $H(t,x,u)$ \rightarrow $\mathbf{U}(t,x,\cup \lbrack t,x,u)$ for all \mathcal{L} , and we have the since \mathcal{L} and \mathcal{L} under the since \mathcal{L} and \mathcal{L} \mathcal{A} , it follows from (b) that

$$
G(t, x_0(t), u) \le G(\tilde{x}_0(t))
$$

for all $(t, u) \in T \times \mathbb{R}^m$ with $(t, x_0(t), u) \in$ \mathbf{I} . And the state is the state of the state \mathbf{I} $G(t, x_0(t), u)$ for all $(t, u) \in T \times \mathbf{R}^m$ and set

$$
S := \{ (t, u) \in T \times \mathbf{R}^m \mid g(t, u) = 0 \}.
$$

Since $h(t, u_0(t)) \leq h(t, u)$ for all $(t, u) \in S$, by $\mathbf{u} = \mathbf{u}$, there exists a unique $\mathbf{u} = \mathbf{u}$ and the exists a unique set of \mathbf{u} that, if we set

$$
F(t, u) := h(t, u) + \langle \mu(t), g(t, u) \rangle
$$

 \mathbf{u} . Future words if \mathbf{u} if \mathbf{u}

$$
\tilde G(t,x,u):=G(t,x,u)-\langle\mu(t),\varphi(t,x,u)\rangle,
$$

so that $G(t, x_0(t), u) = -T(t, u)$, then

$$
0 = \hat{G}_u(\tilde{x}_0(t)) = G_u(\tilde{x}_0(t)) - \mu^*(t)\varphi_u(\tilde{x}_0(t)).
$$

The function \mathbf{f} is continuous on each interval interv of continuity of uncertainty of uncertainty \mathbf{v} and \mathbf{v} we have $\{v, x, \psi\}(v, x, u)\}\subset \mathcal{A}$ and $H(\psi, x, u)\equiv$ $G(t, x, U(t, x, u))$, it follows that

$$
\hat{H}(t,x,u)=\hat{G}(t,x,U(t,x,u))\qquad ((t,x,u)\in\mathcal{B}).
$$

Consequently

$$
\hat{H}_x(\tilde{x}_0(t)) = \hat{G}_x(\tilde{x}_0(t)) + \hat{G}_u(\tilde{x}_0(t))U_x(\tilde{x}_0(t))
$$

= $\hat{G}_x(\tilde{x}_0(t)).$

 $S = \{f(t, u, u) = H(t, u, u, p(t), \mu(t), \lambda_0), \}$ conditions of the theorem hold-

3.2 Corollary: If (x_0, u_0) solves $P(A, f, I)$ and $\mathcal{L}_{\mathcal{L}}$ is as in Theorem . In Theorem .

$$
\langle h, H_{uu}(\tilde{x}_0(t), p(t), \mu(t), \lambda_0)h \rangle \le 0
$$

for all $h \in \mathbf{R}^m$ such that $\varphi_u(x_0(t))h = 0$.

are are supposed them in the some \mathcal{N} , and \mathcal{N} $p \in A$, $\lambda \in \mathbf{R}$ and a function $\mu: I \to \mathbf{R}^*$, we have

$$
0 = H_u(\tilde{x}(t), p(t), \mu(t), \lambda)
$$

$$
[= p^*(t) f_u(\tilde{x}(t)) - \lambda L_u(\tilde{x}(t)) - \mu^*(t) \varphi_u(\tilde{x}(t))]
$$

for all t T - Then Uq and

$$
\mu^*(t) = \{p^*(t)f_u(\tilde{x}(t)) - \lambda L_u(\tilde{x}(t))\}\varphi_u^*(\tilde{x}(t))D(t)
$$

for all $t \in I$, where $D(t) = [\varphi_u(x(t)) \varphi_u(x(t))]$.

3.4 Definitions:

• For all $(x, u) \in Z$ define the set $Y_1(x, u)$ of admissible variations along (x, u) as the set of all $(y, v) \in Z$ satisfying

 $\mathcal{F} = \mathcal{F}$ ii-
yt Atyt Btvt t T  τ . The international properties in the contract of τ is the contract of τ is the contract of τ

where \mathcal{L} is the state of the state of the state of the state \mathcal{L}

• For all $(x, u) \in Z$ let $M_1(x, u)$ denote the set \mathcal{L} and \mathcal{L} , \mathcal{L} are the such that the such that \mathcal{L} are the such that \mathcal{L} $|0, \lambda_0 + |p| + |\mu| \neq 0, p(t) = -H_x(t, \lambda_0),$ and u_1 , where u_2 is the transition of the transition of the transition of the u_1 \blacksquare to the following t sets

$$
\mathcal{E}_1 := \{ (x, u, p, \mu) \in Z \times X \times \mathcal{U}_q \mid (x, u) \in D(f)
$$

and $(1, p, \mu) \in M_1(x, u) \}$

$$
\mathcal{H}_1 := \{ (x, u, p, \mu) \in Z \times X \times \mathcal{U}_q \mid
$$

 $J_1((x, u); (y, v)) \geq 0$ for all $(y, v) \in Y_1(x, u)$ where, for all $(y, v) \in Z$,

$$
J_1((x,u);(y,v))=\int_{t_0}^{t_1}2\Omega_1(t,y(t),v(t))\,dt
$$

and, for all $(t, y, v) \in I \times \mathbf{R}^n \times \mathbf{R}^n$,

$$
2\Omega_1(t, y, v) := -[(y, H_{xx}(t, 1)y) +2\langle y, H_{xy}(t, 1)v\rangle + \langle v, H_{uu}(t, 1)v\rangle]
$$

where Ht  denotes Hxt pt t -

• A process (x, u) will be said to be normal to \mathcal{P} is that for \mathcal{P} is the property of the form of \mathcal{P} all $t \in T$,

$$
\dot{p}(t) = -A^*(t)p(t) + \varphi_x^*(\tilde{x}(t))\mu(t)
$$
\n
$$
[= -H_x^*(\tilde{x}(t), p(t), \mu(t), 0)]
$$
\n
$$
0 = B^*(t)p(t) - \varphi_u^*(\tilde{x}(t))\mu(t)
$$
\n
$$
[= H_u^*(\tilde{x}(t), p(t), \mu(t), 0)]
$$

. It is a property in the property of the set of \mathbb{R}^n and \mathbb{R}^n are \mathbb{R}^n . It is a property of \mathbb{R}^n Note that, if (x, u) is normal to $P(A, f, I)$ and $\mathcal{M} \cup \mathcal{M}$, we have the matrix of the set of the

 Note- Let x u Z and suppose that given $\mathcal{M} \subset \mathcal{M}$. The formulation that for all the formulations $\mathcal{M} \subset \mathcal{M}$

1. $p(t) = -A(t)p(t) + \varphi_x(x(t))\mu(t)$;

ii. $p^*(t)B(t)h = 0$ for all $h \in \mathbf{R}$ satisfying \mathcal{F} under the state of \mathcal{F}

necessarily p = vi = normal in july on necessarily is $P(A, f, I)$.

 \mathbf{J} . Demma: Consider problem \mathbf{I} (b, f, f) given in the proof of Theorem 3.1 and suppose (x_0, u_0) is normal to $P(A, f, I)$. Then (x_0, u_0) is normal ω i ω , j, i,

Proof: We want to prove that $p \equiv 0$ is the only solution of

$$
\dot{p}(t) = -\hat{A}^*(t)p(t), \quad 0 = \hat{B}^*(t)p(t) \qquad (t \in T)
$$

where

$$
\hat{A}(t) = \hat{f}_x(\tilde{x}_0(t)) = A(t) + B(t)U_x(\tilde{x}_0(t)),
$$

$$
\hat{B}(t) = \hat{f}_u(\tilde{x}_0(t)) = B(t)U_u(\tilde{x}_0(t)).
$$

This follows since a property the above relationships and the above relationships of the above relationships of \mathcal{L} tions correspond to

$$
p(t) = -A^*(t)p(t) - U_x^*(\tilde{x}_0(t))B^*(t)p(t)
$$

= -A^*(t)p(t) + \varphi_x^*(\tilde{x}_0(t)) \mu(t)

and

$$
0 = U_u^*(\tilde{x}_0(t))B^*(t)p(t)
$$

= $B^*(t)p(t) - \varphi_u^*(\tilde{x}_0(t))\mu(t)$

 \cdots and the property is equal to the contract of \cdots

$$
[\varphi_u(\tilde{x}_0(t))\varphi_u^*(\tilde{x}_0(t))]^{-1}\varphi_u(\tilde{x}_0(t))B^*(t)p(t).
$$

Thus the normality of (x_0, u_0) to $P(A, f, I)$ implies that $p \equiv 0$.

We are now in a position to establish first and second order conditions for the problem with mixed equality constraints.

theorem-suppose and the solves particle in the solves particle in the solves particle in the solves particle in $\mathbf{1}$ is not in the matrix of $\mathbf{1}$ is not in the matrix of $\mathbf{1}$ is not in the matrix of $\mathbf{1}$ PA f I then there exists a unique p  \mathbf{U} , under the such that \mathbf{U} is the such that \mathbf{U} is the such that \mathbf{U} $x \sim u + v + v$

Proof Suppose x u solves PA f I - By \mathcal{L} . The contract of \mathcal{L} and \mathcal{L} are the contract of \mathcal{L} . The contract of \mathcal{L} $M_1(x_0, u_0)$ and suppose (x_0, u_0) is normal to $\mathcal{P}=\{x_i\mid i=1,\cdots, n-1\}$. This is implied to the internal function of \mathcal{P} $\mathcal{N} = \{ \mathcal{N} \mid \mathcal{N} \}$, which is a property of the results of \mathcal{N} and \mathcal{N} are considered in the set of \mathcal{N}

$$
\dot{r}(t) = -A^*(t)r(t) + \varphi_x^*(\tilde{x}_0(t))[\mu(t) - \nu(t)]
$$

$$
0 = B^*(t)r(t) - \varphi_u^*(\tilde{x}_0(t))[\mu(t) - \nu(t)]
$$

implying that $p \equiv q$ and $\mu \equiv \nu$.

Let $(p,\mu) \in X \times \mathcal{U}_q$ be the unique pair such that $(x_0, u_0, p, \mu) \in \mathcal{E}_1$ and define

$$
K(x, u) := \langle p(t_1), \xi_1 \rangle - \langle p(t_0), \xi_0 \rangle +
$$

$$
\int_{t_0}^{t_1} F(t, x(t), u(t)) dt \quad ((x, u) \in Z)
$$

where, for all $(t, x, u) \in T \times \mathbb{R}^n \times \mathbb{R}^m$,

$$
F(t, x, u) := L(t, x, u) - \langle p(t), f(t, x, u) \rangle +
$$

$$
\langle \mu(t), \varphi(t, x, u) \rangle - \langle \dot{p}(t), x \rangle.
$$

Observe that

$$
F(t, x, u) = -H(t, x, u, p(t), \mu(t), 1) - \langle p(t), x \rangle
$$

and, if $(x, u) \in Z_e(\mathcal{A}, f)$, then $K(x, u) = I(x, u)$. Let $(y, v) \in Y_1(x_0, u_0)$. By Note 2.3 we have

$$
U_x(\tilde{x}_0(t))y(t) + U_u(\tilde{x}_0(t))v(t) = v(t) -
$$

$$
\varphi_u^*(\tilde{x}_0(t))D(t)[\varphi_x(\tilde{x}_0(t))y(t) + \varphi_u(\tilde{x}_0(t))v(t)]
$$

where $D(t) = [\varphi_u(\tilde{x}_0(t))\varphi_u^*(\tilde{x}_0(t))]^{-1}$. But the right-hand expression equals $v(t)$ and, therefore,

$$
y(t) = A(t)y(t) + B(t)v(t)
$$

= $\hat{A}(t)y(t) + \hat{B}(t)v(t)$

We conclude that $(y, v) \in Y_0(x_0, u_0)$ with respect to $P(\mathcal{B}, \hat{f}, \hat{I})$. Also, by Lemma 3.6, (x_0, u_0) is normal to $P(\mathcal{B}, \hat{f}, \hat{I})$. Therefore, by Lemma 1.4, there exist $\delta > 0$ and a one-parameter family $(\hat{x}(\cdot,\epsilon),\hat{u}(\cdot,\epsilon))\in Z_{\epsilon}(\mathcal{B},f)$ ($|\epsilon|<\delta$) such that i. $\hat{x}(t,0) = x_0(t), \hat{u}(t,0) = u_0(t)$ $(t \in T)$.

ii. $\hat{x}_{\epsilon}(t,0) = y(t), \ \hat{u}_{\epsilon}(t,0) = v(t) \ (t \in T).$

Set $x(t, \epsilon) := \hat{x}(t, \epsilon), u(t, \epsilon) := U(t, \hat{x}(t, \epsilon), \hat{u}(t, \epsilon)).$ Clearly $(x(\cdot,\epsilon),u(\cdot,\epsilon))\in Z_{\epsilon}(\mathcal{A},f)$. Let

$$
g(\epsilon) := K(x(\cdot,\epsilon),u(\cdot,\epsilon)) = I(x(\cdot,\epsilon),u(\cdot,\epsilon)).
$$

Thus $g(\epsilon) \ge g(0)$ ($|\epsilon| < \delta$). Since

$$
u_\epsilon(t,\epsilon) = U_x(t,\hat{x}(t,\epsilon),\hat{u}(t,\epsilon))\hat{x}_\epsilon(t,\epsilon) +
$$

$$
-U_u(t,\hat{x}(t,\epsilon),\hat{u}(t,\epsilon))\hat{u}_\epsilon(t,\epsilon)
$$

we have

$$
u_{\epsilon}(t,0) = U_x(\tilde{x}_0(t))y(t) + U_u(\tilde{x}_0(t))v(t)
$$

= $v(t)$

and, therefore,

$$
0 \leq g''(0) = K''((x_0, u_0); (y, v))
$$

= $J_1((x_0, u_0); (y, v))$.

References:

- [1] EG Gilbert, DS Bernstein, Second-order necessary conditions in optimal control: accessory-problem results without normality conditions, Journal of Optimization Theory and Applications, Vol 41, No 1, 1983, pp 75-106
- [2] MR Hestenes, Calculus of Variations and Optimal Control Theory, John Wiley, New York, 1966
- [3] J Warga, A second-order Lagrangian condition for restricted control problems, Journal of Optimization Theory and Applications, Vol 24, No 3, 1978, pp 475-483