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Abstract:

This paper introduces an orthogonal forward regression (OFR) model structure selection

algorithm based on the M-estimators. The basic idea of the proposed approach is to incorporate an TRLS
inner loop into the modified Gram-Schmidt procedure. In this manner the OFR algorithm is extended to
bad data conditions with improved performance due to M-estimators’ inherent robustness to outliers. An
illustrative example is included to demonstrate the effectiveness of the proposed algorithm.
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1 Introduction

The orthogonal forward regression (OFR) is an effi-
cient algorithm to determine a parsimonious model
structure [1]. Driven by requirements for improved
model generalization, a few variants of OFR have
been introduced in order to tackle ill-conditioning
problem by modifying the selective criteria in for-
ward regression [2]-[3]. Although these methods do
not generally need the assumption of a normal er-
ror distribution, the parameter estimator may not
be statistically optimal if the data exhibit bad con-
ditions such as outliers, or are heavy tailed com-
pared to normal distribution. As a generalization
of maximum-likelihood estimation method for data
with outliers, the general method of M-estimation [4]
is well established to tackle outliers in observational
data. Computationally M-estimator can be derived
using an iterative reweighted least squares (IRLS)
algorithm. M-estimation has been applied success-
fully to time series prediction, image processing and

System identification, M-estimation, forward regression, parameter estimation, robustness

pattern recognition [5, 6, 7]. This paper presents
a new model identification algorithm that combines
the M-estimator with forward regression. Based on
the modified Gram-Schmidt procedure for orthogonal
forward regression (OFR), the proposed algorithm
incorporates an IRLS inner loop into the modified
Gram-Schmidt procedure to derive a M-estimator of
model parameters. In combination with D-optimality
for model structure selection[3], the proposed algo-
rithm simultaneously derive robust model structure
and parameter estimates for bad data conditions.

2 Preliminaries

A linear regression model (RBF neural network, B-
spline neurofuzzy network) can be formulated as [8, 9]

M
y(t) =Y pr(x(1))0k +&(1) (1)
k=1

where ¢ = 1,2,---, N, and N is the size of the es-
timation data set. y(t) is system output variable,
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x(t) = [z1(t), -,z (t)]" is system input vector with
an assumed known dimension of n. pg(e) is a known
nonlinear basis function, such as RBF, or B-spline
fuzzy membership functions. £(t) is an uncorrelated
model residual sequence with zero mean and variance
of 0. 0}, is model parameter, and M is the number
of regressors.
Eq.(1) can be written in the matrix form as

y=PO+E (2)
where y = [y(1),---,y(N)]T is the output vec-
tor. @ = [01,---,0x]" is parameter vector, E =
[€(1),---,&(N)]T is the residual vector, and P is the
regression matrix

(1) pa(1) pi(1 pu(1)
p_ | P2 n2) Pi(2)-- pm(2)
p1(N)  p2(N) pe(N) -+ pu(N)

with pg(t) = pr(x(t)). Denote the column vectors in
P as Pr = [pk(l)aapk(N)]T’ k = '7M' An
orthogonal decomposition of P is

P = WA (3)

where A = {a;;} is an M x M unit upper triangular
matrix and W is an N X M matrix with orthogonal
columns that satisfy

WIW = diag{k1,---,km} (4)
with
Ky =wWiwp, k=1,---M (5)
so that (2) can be expressed as
= (PA™)(AOQ) +E=WTI +Z (6)
where T' = [y1,---,yn]" is an auxiliary vector. The

above orthogonal decomposition can be realized by
the modified Gram-Schmidt algorithm [1], in which
least squares parameter estimates are usually used.
Based on the modified Gram-Schmidt algorithm, a
few variants of forward OLS algorithms have been
introduced to improve model generalization capabil-
ity based on the concepts from Bayesian regular-
ization/basis pursuit [10], experimental design and
leave-one-out (LOQ) score respectively [11, 12].

The OFR estimator involves selecting a set of ng
variables py = [pk(]-)7 T apk(N)]Ta k = 1,---,nyg,
from M regressors to form a set of orthogonal ba-
sis wg, k = 1,---,ny, in a forward regression man-
ner. The D-optimality criterion [13] maximizes the
determinant of the design matrix defined as W1 Wy,

max{.Jp = det(W} W) =

H Kk} (7)

where W, € RV*7 denotes the resultant regression
matrix, consisting of ngy regressors selected from M
regressors in W. It can be easily verified that the
selection of the a subset of Wy, from W is equivalent
to the selection of the a subset of ny regressors from
P [3].

In this study we are concerned about model con-
struction from data exhibiting bad conditions such as
outliers. The general method of tackling this prob-
lem is well established as M-estimation [4], which
is a generalization of maximum-likelihood estimation
method for data with outliers. The M-estimator [4]
is described in the following section.

2.1 M-estimators

The M-estimators have been well studied [4]. Con-
sidering the linear regression model given by (1), M-
estimator minimizes the cost function

N
=Y pE(t)) (8)
=1

where the function p(£(t)) is some predetermined
nonnegative functionals for different types of estima-
tors, e.g. for least squares p(£(t)) = pr(£(t)) = €2(2).
Typically p(£(t)) is an even function and nondecreas-
ing with respect to the absolute value of £(t). The
problem of least squares estimator is that V), will be
influenced by any outlier typified by a large absolute
value £(t), assuming that if any outlier has yet been
detected and removed in the estimation data set. The
general M-estimator can tolerate undetected outliers
by assigning a smaller weight to observations with
residuals with large absolute values, so the parame-
ter estimates are less vulnerable to unusual data. The
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most common types of M-estimators are the Huber
estimator given by [4]

562 for [¢] <7
TIE| — %7’2 for || > T

pr(6) = { <9>

or the Turkey bisquare estimator, given by

for [£| > T

3

pB(§) =

@l]’_‘oa |

where the parameter 7 is called a tuning constant,
e.g. it is common to choose 7 = 1.3450 for the Hu-
ber estimator and 7 = 4.6850 for the Turkey bisquare
estimator. These values offer robustness against out-
liers, but yet produce 95% efficiency when the errors
are normal [4].

The M-estimator can be derived by setting

191%
26 lo-6, =0 (1)
to yield
Vv 1,
o =Py =0 (12)
where 0 is zero vector.
OV oVu r
v = ey g
= [(€(1)); - (&N (13)

where 1(£) is the derivative of p(§) with respect to
&. Define the weight function

w(t) = d’(;(g)), for t=1,..N.  (14)
Equation (12) can be written as
PTOE =0 (15)

where Q = diag{w(1),w(2),...w(N)}, whose solution
is given as the weighted least squares

on = {PTarP} 'PTOy (16)
Because w(t)’s are a prior unknown, an iteratively
reweighted least square (IRLS) is required. The M-
estimator IRLS procedure is as follows:

Denote m as the iteration step. Initially set m =1,
Q) =1 (i.e. least squares) to derive an initial model
residuals ¢V (), then for m = 2, ..., my,,

P(EmI (@)

w(m)(t): e T(g)

for t=1,..,N. (17)

From (9) and (10), the weight functions of Huber and
the Turkey bisquare estimator can be explicitly given

{ 1
JEm=11)]

(m—1)
wimp = (1= (9212 for [gm=(1)] < 7
B 0 for |£(m=D(t)| > 7

(19)

for [€0n1) (1) < 7
for |€m-D (1) > 7 (18)

respectively. Let Qim) — diag{w(m)(l), w(m)(z)’
~.w™(N)}, then

6™ = (PTmp} 1pTQmy (20)
=m =y — PO (21)

where 20 = [(m)(1),... ¢M)(N)]T are ready for

next iteration step. The above procedure iterates

until the parameter estimator © converges at m =
My

Oy = {PTQme)py-1pTQime)y (22)

3 Model identification algorithm using

forward regression with M-estimation

The modified Gram-Schmidt procedure can be used
to perform the orthogonalization and parameter es-
timation, usually with parameters derived as least
squares parameters.
identification algorithm that combines M-estimator
with forward regression is introduced based on the
modified Gram-Schmidt procedure. Geometrically
the system output vector y, is projected onto a set
of orthogonal basis vectors, {wq,..., wg,...}. For the
modified Gram-Schmidt algorithm, the model resid-
ual is decreased by projecting the system output vec-
tor y onto a new basis wj, at step k. Denote model

In this section a new model
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residual vector as E;), where the subscript denotes
forward regression step k. Initially model residuals
E(o) is y. The procedure at forward regression step
k, can be explicitly interpreted as fitting the previous
model residual vector Z(;_1) (as derived from forward
regression step (k — 1)) using a single variable wy to
solve a new model residual vector E). Because M-
estimator can enhance model parameter robustness
in bad data conditions such as outliers, the proposed
algorithm in this work is a variant of modified Gram-
Schmidt procedure that includes the IRLS inner loop
so as to derive the M-estimators of the auxiliary vec-
tor I'.

Starting from k£ = 1, the columns p;,
E+1 < j < M are made orthogonal to the
kth column at the kth stage. The D-optimality
criterion [3] for each of p;, K +1 < 7 < M
columns is evaluated, and the most relevant col-
umn is selected to be interchanged with the kth
column. The M-estimator for the kth regressor
(the selected regressor) is then derived, as shown
below, via the proposed Re-weighted least squares
(IRLS) inner loop. The operation is repeated for
1<k<ng<(M-1).

The following IRLS algorithm inner loop aims
to derive either Huber or bisquare M-estimator for
the kth element of the auxiliary vector I', which is
initialized as the ordinary least squares parameter

- ) _ WiSk-n
estimator (1) — WS-y 0.
Yk wTwy a

Iterated Re-weighted least squares (IRLS) inner
loop:

i. Initialize m = 2. Note that model residual vector
is initialized as EE,?) based on the parameter 'y,(cl).

ii. For Huber M-estimator, set 7 = T(Ig) =

1.345 std(EEkm)_l)), where std(e) denotes standard de-

viation. Use (18) to construct

or for bisquare M-estimator, set 7 =

4.685 std(EE}Sfl)). Then use (19) to construct

Qg") — dlag{w%)(5((2;_1)(1))@%7")(5((2’;_1)(2))
e V() (24)
iii. Denote
Q(m) — Q%n) for Huber M-estimator %)
Q%n) for bisquare M-estimator
and
* wi Q) wy,
B = By — W w (27)

where ) = [ (1), 607 (2), ... €17 (V)]

(NB. The orthogonal forward regression can be
explicitly interpreted as fitting the previous model
residual vector ;) using the selected orthogonal

basis wy. While 'y,(cl) is derived as least squares
parameter estimates associated with wy , (26)-(27)
are the direct application of (20)-(21) to derive
Re-weighted least square parameter estimates for
M-estimators.)

iv. If ||7](Cm) — 'ylgm_l)H > 6, where § is arbitrarily
small number, then set m = m + 1, and goto step ii.

= 5m (™) Finish the

Otherwise, set Z) = By > Ve = Y

IRLS inner loop.

4 An illustrative example

Only a simple illustrative example is provided in this
section, more experimental studies can be found in
[14]. Consider using an RBF network to approximate
the ‘sinc’ function
sin(z)

o) = 220,

~10<2 <10  (28)
1000 training data y(x) were generated from y(z) =
2(z) + &, using uniformly distributed random z €
[—10,10]. The additive noise ¢ is a Gaussian mix-
ture that mixes two types of noises, a larger portion
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Table 1: RMS errors and model size of derived models with respective to true function z

p
0 | 0.03 | 0.05 | 0.10 | 0.15 | 0.20
OFR with D-optimality Training set | 0.0102 | 0.0138 | 0.0143 | 0.0157 | 0.0175 | 0.0249
and least squares Test set 0.0102 | 0.0135 | 0.0139 | 0.0158 | 0.0175 | 0.0254
Model size 22 22 22 22 22 21
OFR with D-optimality Training set | 0.0131 | 0.0139 | 0.0141 | 0.0129 | 0.0140 | 0.0219
and Huber M-estimator Test set 0.0131 | 0.0135 | 0.0136 | 0.0126 | 0.0137 | 0.0219
Model size 22 22 22 22 22 21
OFR with D-optimality Training set | 0.0128 | 0.0131 | 0.0137 | 0.0124 | 0.0135 | 0.0218
and Bisquare M-estimator Test set 0.0128 | 0.0128 | 0.0132 | 0.0121 | 0.0133 | 0.0217
Model size 22 22 22 22 22 21
05 ;i»: 05f o ?ﬁ% o 05| o ;"&i 1 f“‘
0% \a’f\, o@z‘iggﬁ \"Eg% 0% 1%)?% o8} g \\
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04 g i
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1 @2 1 ;g 9§
05 o i o 05 ;O Bd o Df"%‘ ; % /fn\s\i
oo 3 '3.0 .0 . . ?o 0 £ x
%“% & M o 02 \V v

Figure 1: Data generated by ‘sinc ’ function with additive
noise of various levels of outliers;(Dotted — N (0, 0.05%) (normal)
and Circle — N(0,0.2?) (outliers) )

of normal noise with smaller variance and a smaller
portion of noise with higher variance. ie. ¢ ~
BN(0,0.22) + (1 — B)N(0,0.05?), where 0 < 8 < 0.2
as a small number to denote the contamination ratio,
such that & has the probability (1— ) of being drawn
from N(0,0.05%) ( as “normal ”), and a probability
B of N(0,0.22) (as “outliers ”).

For various levels of contamination ratio 8, 1000
noisy observations were generated and divided into
a training data set of 500 data points and a test
data set of 500 data points. The 500 training data
points is shown in Fig.1 for different 8. For each
case, the proposed algorithm is applied based on the
RBF network. All the training data points are used

Figure 2: The Bisquare M-estimator model predictions with
B = 0.1 and true functions.

as the candidate centre set ¢;’s, with pg(x(¢)) con-
structed using Gaussian function py d(z,cp) =
exp{—|lz — cx||?/h?®}. The width h = 1 is fixed for
simplicity. Note that by removing the IRLS inner
loop of the algorithm, the procedure simply reduces
to OFR with D-optimality algorithm [3]. With var-
ious values of § as different level of bad data condi-
tions, the proposed algorithm is compared with OFR
with D-optimality algorithm using only least squares
estimates and SVM regression. All of the derived
models based on OFR algorithm have the number of
centers in the range of ny = 21 ~ 22. The root of
mean squares (RMS) errors of a range of data con-
ditions are listed in Table 1. It is seen that the pro-
posed algorithm is most robust to outliers when the
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data contains approximately 10% outliers. To achieve
better performance for M-estimators, it is useful to
slightly adjust tuning constants because these are set
for 95% efficiency when data is normal. As data dis-
tribution is unknown these values can be adjusted
via iterations and cross-validation. For the training
data set with 8 = 0.1, the model predicted output by
using the proposed algorithm with Turkey bisquare
M-estimators is shown in Fig.2.

5 Conclusions

In this paper an orthogonal forward regression (OFR)
model identification algorithm has been introduced.
The orthogonal forward regression (OFR), often
based on the modified Gram-Schmidt procedure, is
an efficient method incorporating structure selection
and parameter estimation simultaneously. The pro-
posed algorithm includes M-estimator by using an
iterative re-weighted least squares (IRLS) algorithm
inner loop based on the modified Gram-Schmidt pro-
cedure. D-optimality as a model structure robustness
criterion is used in model selection. In this manner
the proposed approach extends the use of the OFR
algorithm for parsimonious model structure determi-
nation even in bad data conditions via the derivation
of parameter M-estimators with inherent robustness
to outliers.
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