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Abstract: This paper provides a numerical solution of the Hamilton-Jacobi-Bellman (HJB) equation
for stochastic optimal control problems. The computation’s difficulty is due to the nature of the
HJB equation being a second-order partial differential equation which is coupled with an
optimization. By using a successive approximation algorithm, the optimization gets separated from
the boundary value problem. This makes the problem solveable by standard numerical methods.
For a problem of portfolio optimization where no analytical solution is known, the numerical
methods is applied and its usefulness demonstrated.
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1 Introduction

Stochastic optimal feedback control, concern of
many different research activities, gains in im-
portance to answer questions arising from various
physical, biological, economic, and management
systems. A necessary condition for an optimal
solution of stochastic optimal control problems is
the HJB equation, a second-order partial differ-
ential equation that is coupled with an optimiza-
tion. Unfortunately, the HJB equation is difficult
to solve analytically. Only for some special cases,
with simple cost functionals and state equations,
analytical solutions are known, e.g. the LQ regu-
lator problem. In the following we provide a suc-
cessive approximation algorithm for a numerical
solution of the HJB equation to tackle problems
with no known analytical solution.

The paper is organized as follows: In Section 2,
we introduce the stochastic optimal control prob-
lem with all of the basic assumptions and state
the HJB equation as a necessary condition for the
value function. Section 3 reveals the successive
approximation algorithm and Section 4 provides
information on computational implementation
and computational issues.

∗Now at Automatic Control Laboratory, Swiss Federal

Institute of Technology, Zürich, Switzerland

Finally, an example of portfolio optimiza-
tion demonstrates the usefulness of the method
in Section 5.

2 Problem Formulation

Consider the n-dimensional stochastic process x
which is governed by the given stochastic differ-
ential equation (SDE)

dx = f(t, x, u)dt + g(t, x, u)dZ, (1)

where dZ denotes k-dimensional uncorrelated
standard Brownian motion defined on a fixed, fil-
tered probability space (Ω,F , {Ft}t≥0,P). The
vector u denotes the control variables contained in
some compact, convex set U ⊂ R

m, the drift term
f(t, x, u) and the diffusion g(t, x, u) are given
functions

f : [0, T ] × G × U −→ R
n,

g : [0, T ] × G × U −→ R
n×k

for some open and bounded set G ⊂ R
n.

The value functional of our problem starting
at arbitrary time t ∈ (0, T ) and state x ∈ G with
respect to a fixed control law u is defined by

J (t, x, u) = E

{∫ τ

t

L(s, x, u)ds + K(τ, x(τ))

}

,

(2)
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where E denotes the expectation operator and L,
K are scalar functions:

L : [0, T ] × G × U −→ R,
K : [0, T ] × G −→ R.

The final time of our problem denoted by τ is the
time when the solution x(t) leaves the open set
Q = (0, T ) × G:

τ = inf {s ≥ t | (s, x(s)) /∈ Q} .

Our aim is to find the admissible feedback
control law u which maximizes the value of the
functional J (t, x, u) leading to the cost-to-go (or
value) function J(t, x):

J(t, x) = max
u(t,x)∈U

J (t, x, u).

We finally arrive at a definition for the stochastic
optimal control problem:

J(t, x)= max
u(t,x)∈U

E

{∫ τ

t

L(s, x, u)ds+K(τ, x(τ))

}

s.t. (3)

dx = f(t, x, u)dt + g(t, x, u)dZ.

In the following we will state the Hamilton-
Jacobi-Bellman equation (or dynamic program-
ming equation) as a necessary conditon for the
cost-to-go function J(t, x). For a detailed deriva-
tion, the reader is referred to [1, 2], or [3].

By introducting the differential operator

A(t, x, u) =
1

2

n∑

i,j=1

σij
∂2

∂xi∂xj

+
n∑

i=1

fi
∂

∂xi

,

where the symmetric matrix σ = (σij) is defined
by σ(t, x, u) = g(t, x, u)gT (t, x, u), the HJB equa-
tion can be written as follows 1:

Jt + max
u∈U

{L(t, x, u) + A(t, x, u)J} = 0,

(t, x) ∈ Q, (4)

with the boundary data

J(t, x) = K(t, x), (t, x) ∈ ∂∗Q, (5)

where ∂∗Q denotes a closed subset of the bound-
ary ∂Q such that (τ, x(τ)) ∈ ∂∗Q with probability
1:

∂∗Q = ([0, T ] × ∂G) ∪ ({T} × G).

1For simplicity, we will use index notation to express

partial derivatives and often suppress function arguments,

e.g. Jt =
∂J(t,x)

∂t
.

The HJB equation (4) is a scalar linear second-
order PDE which is coupled with an optimiza-
tion over u. This makes solving the problem so
difficult (apart from computational issues arising
from problem sizes in higher dimensions). Note
that the coefficients of (4) are dependent on t, x,
and u.

3 Numerical HJB Solutions

As already mentioned in the previous section, an-
alytical solutions of the HJB equation are only
known for some special cases with simple state
equations and cost functional. In this section we
will reveal a numerical approach for solving the
HJB equation enabling us to investigate a broader
class of optimal control problems.

3.1 Successive Approximation of the

HJB Equation

Solving the PDE and optimization problem at
once would lead to unaffordable computational
costs. Chang and Krishna propose a successive
approximation algorithm which will be used in
the following [4].

Lemma 1 (without proof) Let Ju be the solu-
tion of the boundary value problem corresponding
to the arbitrary but fixed control law u ∈ U :

Ju
t + L(t, x, u) + A(t, x, u)Ju = 0, (t, x) ∈ Q,

(6)

with boundary data

Ju(t, x) = K(t, x), (t, x) ∈ ∂∗Q. (7)

Then
Ju(t, x) = J (t, x, u), (8)

where J (t, x, u) denotes the value functional de-
fined in (2). For the proof refer to section V§7 in
[3, pp. 129–130].

We are now going to reveal the successive ap-
proximation algorithm. To begin with, assume
Jk to be the solution of (6)–(7) corresponding to
the arbitrary but fixed control law uk ∈ U

Jk
t +L(t, x, uk)+A(t, x, uk)Jk = 0, (t, x) ∈ Q,

(9)
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Jk(t, x) = K(t, x), (t, x) ∈ ∂∗Q. (10)

Then the sequence of control laws is given by

uk+1 =arg max
u∈U

{

L(t, x, u) + A(t, x, u)Jk
}

. (11)

Note that because of (9) and (11)

L(t, x, uk+1) + A(t, x, uk+1)Jk

≥ L(t, x, uk) + A(t, x, uk)Jk.
(12)

Now let Jk+1 be the solution of the boundary
value problem (6)–(7) corresponding to the new
control law uk+1:

Jk+1
t + L(t, x, uk+1) + A(t, x, uk+1)Jk+1 = 0,

(t, x) ∈ Q, (13)

Jk+1(t, x) = K(t, x), (t, x) ∈ ∂∗Q. (14)

Lemma 2 Let the sequences of control laws uk

and their affiliated value functionals Jk be defined
as above. Then the sequence Jk satisfies

Jk+1 ≥ Jk. (15)

Proof 1 Define W = Jk+1 − Jk on Q and com-
pute Wt + A(t, x, uk+1)W :

Wt+A(t, x, uk+1)W =Jk+1
t +A(t, x, uk+1)Jk+1

− Jk
t −A(t, x, uk+1)Jk.

(16)

Adding and subtracting L(t, x, uk+1) on the right-
hand side and using (13) and (12) yields

Wt + A(t, x, uk+1)W =

= Jk+1
t + A(t, x, uk+1)Jk+1 + L(t, x, uk+1)

︸ ︷︷ ︸

=0

−
[

Jk
t + A(t, x, uk+1)Jk + L(t, x, uk+1)

︸ ︷︷ ︸

≥A(t,x,uk)Jk+L(t,x,uk)

]

.

Thus,

Wt + A(t, x, uk+1)W

≤ −
[

Jk
t + A(t, x, uk)Jk + L(t, x, uk)

]

︸ ︷︷ ︸

=0

.

The squared bracket term on the right-hand side
of the previous equation is equal to zero due to
(9). Hence,

Wt + A(t, x, uk+1)W ≤ 0. (17)

Next, we compute the expectation of W (τ, x(τ))
by integration of its total derivative according to
Itô’s rule subject to (1) and the last control law
uk+1:

E {W (τ, x(τ))} = W (t, x)

+ E

{∫ τ

t

[

Wt(t, s)+A(t, s, uk+1)W (t, s)
]

ds

}

.

Knowing that by definition W (τ, x(τ)) =
Jk+1(τ, x(τ)) − Jk(τ, x(τ)) vanishes on ∂∗Q be-
cause of (10) and (14) and considering (17) we
obtain

W (t, x) = E {W (τ, x(τ))}
︸ ︷︷ ︸

=0

−E







∫ τ

t

[

Wt(t, s)+A(t, s, uk+1)W (t, s)
]

︸ ︷︷ ︸

≤0

ds







≥0.

Since W (t, x) = Jk+1−Jk, it follows directly that

Jk+1 ≥ Jk.

Theorem 1 Let the sequences of control laws uk

and their corresponding value functionals Jk be
defined as above. Then they converge to the op-
timal feedback control law u(t, x) and the value
function J(t, x) of our optimal control problem
(3), i.e.:

lim
k→∞

uk(t, x)=u(t, x) and lim
k→∞

Jk(t, x)=J(t, x).

Proof 2 Due to Theorem 15 in [5, p. 80] (see
also Theorem VI.6.1 in [3, pp. 208–209]) Jk,
Jk

xi
converge uniformly on Q to J∗, J∗

xi
and Jk

t ,
Jk

xixj
weakly to J∗

t , J∗
xixj

(for necessary properties
of f , g, L and K refer to [3, p. 167]). Consider
now the limit of (13) for k → ∞:

lim
k→∞

[

Jk+1
t +L(t, x, uk+1)+A(t, x, uk+1)Jk+1

]

=0.

Since the limits of Jk and its derivatives do exist,
we may change iteration indices:

0= lim
k→∞

[

Jk
t + L(t, x, uk+1) + A(t, x, uk+1)Jk

]

.
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By using (11) and substituting limk→∞ Jk,
limk→∞ Jk

t with their limits J∗ resp. J∗
t , we ob-

tain

0= lim
k→∞

[

Jk
t + max

u∈U

{

L(t, x, u) + A(t, x, u)Jk
}]

= J∗
t +max

u∈U
{L(t, x, u)+A(t, x, u)J∗} ,

where (t, x) ∈ Q. Since J∗(t, x) = K(t, x) on
∂∗Q, J∗(t, x) solves (4) and (5) and hence is the
solution of the optimal control problem (3). Con-
sequently,

u∗(t, x) = arg max
u∈U

{L(t, x, u) + A(t, x, u)J∗}

is the optimal feedback control law.

Before we continue, let us recapitulate the suc-
cessive approximation algorithm:

1. k = 0; choose an arbitrary initial control law
u0 ∈ U .

2. Solve the boundary value problem for the
fixed control law uk, i.e., Jk(t, x) solves

Jk
t +L(t, x, uk)+A(t, x, uk)Jk = 0,

(t, x) ∈ Q,
Jk(t, x) = K(t, x), (t, x) ∈ ∂∗Q.

3. Compute the succeeding control law uk+1,
i.e., solve the optimization problem:

uk+1 =arg max
u∈U

{

L(t, x, u)+A(t, x, u)Jk
}

.

4. k = k + 1; back to step 1.

To sum up, the algorithm is an iterative ap-
proach which decouples the optimization from the
boundary value problem and thus avoids the need
of doing the whole work at once. In other words,
the difficult problem of finding a numerical solu-
tion of the HJB equation (4) has been seperated
into two easier ones which are solvable by stan-
dard numerical means: 1. Solving boundary value
problem (9)–(10). 2. Optimization of the nonlin-
ear function with possible controller constraints
(11).

4 Computational Implementa-

tion

In this section, we will point out a possible way of
solving the PDEs and optimization problems aris-
ing from the successive approximation algorithm
introduced in the previous section.

4.1 Numerical Solution of the HJB-

PDE

Boundary value problem (9)–(10) is a scalar
second-order PDE with nonlinear coefficients and
hence can be tackled by standard methods for
linear parabolic PDEs. With the mixed deriva-
tives left out of consideration, (9) has the struc-
ture of the heat equation with advection and
source terms. However, in contrast to the heat
problem, the HJB-PDE has a terminal condition
Jk(T, x) = K(T, x) rather than an initial condi-
tion and therefore has to be integrated backwards
in time. With the simple substitution t̄ = T − t
the problem is converted into a PDE which can
be integrated forward in time (i.e. t̄ runs from 0
to T ):

Jk
t̄
−

[
L(t̄, x, uk)+A(t̄, x, uk)Jk

]
=0, (t̄, x)∈ Q,

Jk(t̄, x) = K(t̄, x), (t̄, x) ∈ ∂∗Q.

Since available standard codes were not able
to handle mixed derivatives and coefficients de-
pendent on t, x and u, we developed our own
solvers. Although many different methods for
solving PDEs have been developed so far, there
does not exist one which is best-suited for all
types of applications. We use finite difference
schemes as they are both well-suited for simple
(rectangular) shaped domains Q and rather easy
to implement. For a good introduction into the
topic of finite difference schemes, the reader is ad-
vised to read [6]. Our solver employs an implicit
scheme and uses upwind differences for the first
order derivatives for stability reasons. Second or-
der and mixed derivatives are approximated by
central space differences. Although not required
by (9) we extended the code to handle an addi-
tional linear term of Jk and Neumann boundary
conditions on ∂G. This enables us to get bet-
ter results for some financial applications which
can be significantly simplified by a special trans-
formation adding the linear term (for details see
Section 5).
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4.2 Optimization

According to Section 3, we are facing the follow-
ing nonlinear optimization problem to compute
the succeeding control law:

uk+1 = arg max
u∈U

{

L(t, x, u) + A(t, x, u)Jk
}

.

Since we approximate Jk(t, x) on a finite grid, the
optimization must be solved for every grid point.
This can be accomplished by standard optimiza-
tion tools. For problems with simple functions, it
may be possible to obtain an analytical solution
for the optimal control law. This is to be pref-
ered in return of less computational time. For
our example of portfolio optimization provided in
Section 5, we are able to obtain an explicit ex-
pression for the optimal control law.

4.3 Numerical Issues

Since the number of unknown grid points at which
we approximate Jk(t, x) grows by an order of
magnitude with dimension (Bellman’s curse of di-
mensionality) and grid resolution we have to face
issues of

• memory limitations and

• computation time and accuracy.

The PDE solvers outlined in Section 4.1 require
the solution of large systems of linear equations.
The coefficient matrix of these linear systems is
banded and therefore strongly encourages the use
of sparse matrix techniques to save memory. Fur-
thermore, applying indirect solution methods for
linear systems such as successive overrelaxation
provides higher accuracy and memory efficiency
than direct methods (for details see [7]).

MATLAB’s memory requirement for storing
the coefficient matrix corresponding to the im-
plicit scheme described in Section 4.1 is outlined
examplarily in [8]. While we need only 2.4 MB
for a two dimensional grid of 150 points in each
space coordinate, the matrix will allocate approx-
imately 732 MB in the three dimensional case.
Considering the fact that todays 32-bit architec-
tures limit the virtual memory for variable stor-
age to 1.5 GB (0.5 GB are needed by MATLAB),
it is obvious that our solvers are restricted to
rather coarse grids and low dimensions showing
that Bellman’s curse of dimensionality can’t be

overcome by the successive approximation. How-
ever, enhanced numerical methods such as alter-
nating direction implicit (ADI) methods or do-
main decompositon algorithms could contribute
to tackle bigger problems. For further informa-
tion on these topics the reader is referred to [6]
and [9].

5 Case Study

The case study presents a portfolio optimization
problem in continuous-time. In the late 1960’s
Robert Merton showed showed the connection be-
tween stochastic optimal control and portfolio op-
timization under uncertainty [10, Chapter 4 and
5].

5.1 Portfolio Optimization Problem

We consider a portfolio optimization problem
where an investor has the choice of investing in
the stock market or to put his money in a bank
account. We model the stock market as geometric
Brownian motion with time-varying and stochas-
tic mean returns and time-varying and stochastic
diffusion term (volatility). Mathematically, the
stock market model and the bank account model
are given by

dS(t)

S(t)
= [Fx(t) + f ]dt +

√

v(t)dZ1, (18)

dB(t)

B(t)
= rdt , (19)

where S(t) is the stock market index, B(t) is the
value of the bank account, r is the risk-free inter-
est rate, x(t) is a factor that directly affects the
mean return, and v(t) is the square of the volatil-
ity. The dynamics for the factor and the volatility
are modelled as

dx(t) = (a1 + A1x(t))dt+νdZ2, (20)

dv(t) = (a2 + A2v(t))dt+σ
√

v(t)dZ3, (21)

where a1, A1, a2, A2, ν, and σ ∈ R are parameters
describing the models. The volatility model is de-
scribed in detail in [11], the factor model in [12].
Furthermore, we assume that all three Brown-
ian motions are correlated: dZ1dZ2 = ρ12dt,
dZ1dZ3 = ρ13dt, and dZ2dZ3 = ρ23dt. The port-
folio dynamics (wealth equation) for this invest-
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ment universe is given by

dW (t) = W (t)(r + u(t)(Fx(t) + f − r))dt

+ W (t)u(t)
√

v(t)dZ1 , (22)

where W (t) ∈ R describes the value of the port-
folio and u(t) is the fraction of wealth invested in
the stock market. For the derivation of (22), the
reader is referred to [10, Chapter 5]. The objec-
tive of the investor is to maximize the expecta-
tion of the power utility of his wealth at a finite
fixed time horizon T : max E

{
1γW γ(T )

}
. Thus

the portfolio optimization problem is

max
u∈[−1,1]

E

{1

γ
W γ(T )

}

s.t.

dW (t) = W (t)(r + u(t)(Fx(t) + f − r))dt

+ W (t)u(t)
√

v(t)dZ1

dx(t) = (a1 + A1x(t))dt+νdZ2

dv(t) = (a2 + A2v(t))dt+σ
√

v(t)dZ3, (23)

where γ < 1 is coefficient of risk aversion and
u(t) ∈ [−1, 1]. For this problem of portfolio opti-
mization no analytical solution is known and thus,
we solve the problem by the proposed numerical
method. We make the assumption that both of
the processes x(t) and v(t) are measurable and
we have both of the time series to estimate the
model parameters. The HJB equation for port-
folio problem (23) (suppressing t in all functions
for compactness) is

Jt + max
u∈[−1,1]

{

W (r + u(Fx + f − r))JW

+ (a1 + A1x)Jx

+ (a2 + A2v)Jv +
1

2

(

W 2u2vJWW + vσ2Jvv

+ ν2Jxx

)

+ Wu
√

vρ12νJWx + Wuρ13vσJWv

+
√

vσρ23νJxv

}

= 0 , (24)

with terminal condition J(T, ·) = 1
γ
W γ(T ). For

this type of HJB we make the Ansatz J =
1
γ
W γ(t)H(t, x, v) in order to simplify the prob-

lem. Putting the Ansatz into (24) yields

Ht+ max
u∈[−1,1]

{

γ
(

r + u(Fx+f − r)

+
1

2
u2v(γ − 1)

)

H

+ (a1 + A1x + γu
√

vρ12ν)Hx +
1

2
ν2Hxx

+
1

2
vσ2Hvv + (a2 + A2v + γuvρ13σ)Hv

+
√

vσρ23νHxv

}

= 0, (25)

with terminal condition H(T, x, v) = 1. The HJB
equation (25) is a problem with two state vari-
ables x(t) and v(t). The optimal control law is
given by

u∗ =
1

(1 − γ)v

(

(Fx + f − r) + σρ13v
Hv

H

+ ν
√

vρ12
Hx

H

)

(26)

and note that u(t) ∈ [−1, 1]. In order to compute
u∗ we need to solve the PDE for H and calculated
the two derivatives. If u∗ violates the constraint,
the value of u∗ is set to the limits of the constraint.

5.2 Simulation with Historical Data

The portfolio optimization problem (5.1) is ap-
plied to US data. We use the S&P 500 in-
dex as stock market index, the volatility index
(VIX) as measurable time series for the volatil-
ity, and the difference between the E/P ratio of
the S&P 500 and the 10 year Treasury Bond in-
terest rate as factor that explains the expected
mean returns. As short-term interest rate, we
use the 1-month Treasury Notes. All five time se-
ries start on 1/1/1992 and end on 1/1/2004 and
were obtained from Thomson DATASTREAM.
We use the data from 1/1/1992 to 31/12/1997
to estimate the model parameters. The data from
1/1/1998 to 1/1/2004 is then used to evaluate the
performance of our optimal portfolio controller.

The controller is numerically computed based
on the estimated parameters till 31/12/1997. The
time horizon is 1/1/2004 and the HJB equation is
solved with a monthly time step and γ = −5. The
parameters of model are again estimated based
on the data from 1/1/1992 to 31/12/2000 in or-
der to calculate the controller based on more re-
cent data. As similar procedure is used in [13]
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Table 1: Parameter estimates of the portfolio
model

31/12/1997 31/12/2000

a1 0.13 0.12

A1 -4.73 -2.86

a2 -0.013 -0.015

A2 -0.85 -0.83

ν 0.013 0.013

σ 0.287 0.367

ρ12 0.20 0.05

ρ13 -0.62 -0.73

ρ23 -0.16 -0.03

F 8.96 10.48

f 0.32 0.35

r 0.044 0.046

and [12]. The performance of the portfolio op-
timization therefore is always tested on the out-
of-sample data. The parameters are estimated
using the discrete-time equivalent of the models
and using a pseudo maximum likelihood proce-
dure for (21) and the exact maximum likelihood
procedure for (20) and (18). For details see [14].
The parameter estimates are given in Table 1.

Figure 1: Optimal investment policy
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In Fig. 1, the optimal investment policy as func-
tion of x(t) and v(t) is shown. The controller is
the solution of (25). It is computed with the nu-
merical procedure as outlined in Section 3. In or-
der to interpret the resulting controller, we fix the

Figure 2: Optimal investment policy
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Plot of control law for fixed volatility 28% and varying mean return
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Plot of control law for fixed mean return 13% and varying volatility
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mean return and plot u(t) as function of volatility
and we fix the volatility and plot u(t) as function
of the mean return, as shown in Fig. 2. The opti-
mal investment policy is almost a linear function
of the expected returns and resembles a hyperbola
with respect to the volatility. The investment in
the risky stock market decreases when the volatil-
ity for each given expected return increases. The
effect of the time horizon can be seen in Fig. 2,
where the optimal policy for time horizon 1 month
and three years are shown.

Figure 3: Results of the historical simulation with
US data from 1998 to 2004
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Table 2: Statistics of the historical simulation

Portf. S&P 500 Bank ac.

return (%) 5.98 2.8 3.54

volatility (%) 6.8 21.9 -

Sharpe ratio 0.36 -0.03 -

The result of the historical simulation is given
in Fig. 3 where the portfolio value, the S&P 500
index, the bank account, and the investment in
the stock market are shown. In Table 2 summa-
rizes the statistics of the simulation. The portfo-
lio outperforms both stock market and bank ac-
count. The investments in the stock market vary
from -30% to 100%. The risk aversion used in this
simulation is fairly high. Therefore the portfolio
exhibits a much lower volatility than the stock
market. The portfolio manages to have higher re-
turn than both assets and possesses a markedly
higher Sharpe ratio than the stock market. The
simulation shows that an investor could have ex-
ploited the partial predictability of the returns as
well as the information on risk which is implied
in the volatility index VIX.

6 Conclusion

In this paper we derive a numerical method to
solve the HJB equation. The idea of the suc-
cessive approximation method is explained and
its convergence is proven. To our knowledge,
this is the first convergence proof of the suc-
cessive approximation algorithm. The algorithm
and its numerical implementation are discussed
and applied in a numerical case study. The case
study describes a portfolio optimization prob-
lem in continuous-time where the risky assets are
modeled with time-varying and stochastic drift
and diffusion. The problem is explained and the
optimization is numerically solved by applying
the proposed method. The portfolio optimiza-
tion is used in a real-world case study with U.S.
asset market data. The benefit of the portfolio op-
timization is shown in an six year out-of-sample
test, where the portfolio beats the S&P 500 index
measured in returns and risk-adjusted returns.
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