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Abstract: In this paper we discuss design problem of linear feedback controller for Timoshenko beams
and test of stability of the closed loop systems. Herein we give some linear feedback control law for
various boundary conditions, under which the closed loop systems are well-posed and asymptotically
stable. At same time, we give test method for stability of the closed loop systems and then use the
test method to determine exponential stability of the closed loop systems. Our main result is that if
test system is a Riesz spectral system and decays exponentially, then the closed loop system also is
exponentially stable. If the test system is either unstable or asymptotically sable but not exponentially
stable, then the closed loop system is asymptotically stable.
Key-Words: Timoshenko beam; boundary and distributed feedback control; test of stability; Riesz
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1 Introduction

Many mechanical systems, such as spacecraft and
robot arm, can be modelled as Timoshenko beam
equation (e.g., see, [1] and [2]){

ρẅ(x, t)−K(w′′(x, t)− ϕ′(x, t)) = 0,

Iρϕ̈(x, t)−EIϕ′′(x, t)−K(w′(x, t)−ϕ(x, t)) = 0,

(1.1)
where t is time variable and x ∈ (0, `) is spacial
coordinate along beam in its equilibrium position
and ` is length of beam. w(x, t) is deflection of
beam from its equilibrium line and ϕ(x, t) is slope
of the deflection curve when the shearing force is
neglected, and ρ,K, Iρ and EI are physical con-
stants, for their precise meaning of them, see, Tim-
oshenko’s book [4].

For such a Timoshenko beam with appropriate

boundary conditions, it describes dynamic behav-
ior of corresponding mechanical system. Usually,
Eqs.(1.1) has one of the following boundary con-
ditions:
(B1) free–free:{

K(w′(0, t)− ϕ(0, t)) = EIϕ′(0, t) = 0,

K(w′(`, t)− ϕ(`, t)) = EIϕ′(`, t) = 0.
(1.2)

(B2) built in–free:{
w(0, t) = 0, ϕ(0, t)) = 0,

K(w′(`, t)− ϕ(`, t)) = EIϕ′(`, t) = 0.
(1.3)

(B3) hinged–hinged:{
w(0, t) = 0, EIϕ′(0, t) = 0,

w(`, t) = 0, EIϕ′(1, t) = 0.
(1.4)
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(B4) built in–built in:

{
w(0, t) = ϕ(0, t) = 0,

w(`, t) = ϕ(`, t) = 0.
(1.5)

(B5) built in–hinged

{
w(0, t) = 0, ϕ(0, t) = 0,

w(`, t) = 0, EIϕ′(`, t) = 0.
(1.6)

For physical significance of these boundary condi-
tions, we refer to a paper of Traill-Nash and Collar
[3].

In engineering, the most important problem
is suppression of beam vibration. Many engi-
neers and mathematicians have designed various
controllers to force the beam back to its equilib-
rium position. In recent years, design of feedback
controllers for Timoshenko beam has attracted
more attention and becomes an interesting re-
search topic, for example, Kim and Renardy [5] for
linear boundary feedback controllers, Feng et al [6]
for nonlinear boundary feedback control law, and
Shi et al [7] for distributed feedback controllers.
Under these feedback control laws, analysis of sta-
bility of the closed loop system is a difficult and
complicated task.

Although some nice results have been obtained
for cantilever beam such as exponential stability
(see Kim and Renardy [5]) and Riesz basis prop-
erty of the closed loop system (see, Xu et al.[8],[9],
[10]), and Shubov[11]), we have not a general test
method for stability of the closed loop system.
Can we give an effective way to check the effect
of the control law? In this paper, we shall propose
a test method for Timoshenko beam model (1.1).

Our idea is to take dominant part of the system
(including boundary conditions) as a test system.
More precisely saying, if the system is controlled
by distributed feedback controllers, i.e.,

ρẅ(x, t)−K(w′′(x, t)− ϕ′(x, t))
−a(x)ẇ(x, t) = 0, x ∈ (0, `), t > 0,

Iρϕ̈(x, t)− EIϕ′′(x, t)−K(w′(x, t)− ϕ(x, t))
−b(x)ϕ̇(x, t) = 0, x ∈ (0, `), t > 0,

(1.7)

then we take the following system as a test system
ρẅ(x, t)−Kw′′(x, t) + a(x)ẇ(x, t) = 0,

x ∈ (0, `), t > 0,

Iρϕ̈(x, t)− EIϕ′′(x, t) + b(x)ϕ̇(x, t) = 0,

x ∈ (0, `), t > 0.

(1.8)
If Tomoshenko beam is controlled by boundary
feedback control, then we take test system as{

ρẅ(x, t)−Kw′′(x, t) = 0, 0 < x < `, t > 0
Iρϕ̈(x, t)− EIϕ′′(x, t) = 0, 0 < x < `, t > 0.

(1.9)
In above both cases we can judge stability of test
system by simplify boundary conditions. We can
prove that frequencies of test system are asymp-
totic values of frequencies of the closed loop sys-
tem, and hence the test system and the closed loop
system have same exponential stability.

Our main result is the following.

Theorem 1.1 Let Timoshenko beam be attached
linear feedback controllers and the closed loop sys-
tem be dissipative and asymptotically stable. If
test system is a Riesz spectral system, then the
closed loop system and test system have same ex-
ponential stability.

Usually verification of exponential stability of
the closed loop system is very complicated, and
checking of stability of test system is relative easy,
advantage of this result is that we can assert sta-
bility of the closed loop system from test system.

The contents of this paper are organized as fol-
lows. In next section, we shall give some design of
linear feedback control laws for Timoshenko beam.
In section 3, we shall give test systems for vari-
ous closed loop systems and assert stability of the
closed loop systems using theorem 1.1.

2 Design of feedback control

law for Timoshenko beam

In this section we shall attach some feedback con-
trollers for Timoshenko beam. Herein the feed-
back controllers are classified two types: point-
wise controls (including boundary control) and
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distributed controls. We shall show that under
these designs of feedback control law, energy of
the closed loop systems decays. Hereafter we al-
ways assume system is given by (1.1).

2.1 Pointwise(boundary) feedback con-

trol

For boundary condition (B1), we apply controls
u(t) and v(t) to one end and take feedback con-
trol law as

K(w′(0, t)− ϕ(0, t)) = EIϕ′(0, t) = 0,

K(w′(`, t)− ϕ(`, t)) = u(t) = −αẇ(`, t)− w(`, t)
EIϕ′(`, t) = v(t) = −βϕ̇(`, t)− ϕ(`, t).

(2.1)
For boundary condition (B2), we apply con-

trols u(t) and v(t) to free end and adopt feedback
control law as

w(0, t) = 0, ϕ(0, t) = 0,

K(w′(`, t)− ϕ(`, t)) = u(t) = −αẇ(`, t),
EIϕ′(`, t) = v(t) = −βϕ̇(`, t).

(2.2)
For boundary condition (B3), we take control

law as
w(0, t) = 0, EIϕ′(0, t) = 0,

w(`, t) = 0,

EIϕ′(1, t) = v(t) = −βϕ̇(`, t)− ϕ(`, t).
(2.3)

For boundary condition (B4), we apply con-
trols at a middle point ξ and adopt pointwise feed-
back control law as

w(ξ−, t) = w(ξ+, t), ϕ(ξ−, t) = ϕ(ξ+, t),
w′(ξ−, t)− w′(ξ+, t) = −αẇ(ξ, t)
ϕ′(ξ−, t)− ϕ′(ξ+, t) = −βϕ̇(ξ, t).

(2.4)

For boundary condition (B5), we take feedback
control law as

w(0, t) = 0, ϕ(0, t) = 0,

w(`, t) = u(t) = −αK
∫ t
0 (w′(`, s)− ϕ(`, s))ds,

EIϕ′(`, t) = v(t) = −βϕ̇(`, t).
(2.5)

In the above, the constants α and β are positive
feedback gain.

2.2 Distributed feedback controls

For any one of boundary conditions we always take
distributed feedback controls as

ρẅ(x, t)−K(w′′(x, t)− ϕ′(x, t))
+a(x)ẇ(x, t) = 0,

Iρϕ̈(x, t)−EIϕ′′(x, t)−K(w′(x, t)−ϕ(x, t))
+b(x)ϕ̇(x, t) = 0,

(2.6)
where a(x), b(x) are positive continuous functions
on interval [c, d] ⊂ [0, `], and there is α > 0 such
that max{a(x)} ≥ α, max{b(x)} ≥ α

2.3 Energy of closed loop systems

The energy of Timoshenko beam system is given
by

E(t) = 1
2

∫ `
0 [K|w′(x, t)− ϕ(x, t)|2 + EI|ϕ′(x, t)|2]dx

+1
2

∫ `
0 [ρ|ẇ(x, t)|2 + Iρ|ϕ̇(x, t)|2]dx.

(2.7)
If we adopt pointwise or boundary feedback con-
trols, then

dE(t)
dt = ẇ(x, t)K(w′(x, t)− ϕ(x, t))|x=ξ−

x=0

+ϕ̇(x, t)EIϕ′(x, t)|x=ξ−

x=0

+ẇ(x, t)K(w′(x, t)− ϕ(x, t))|x=`
x=ξ+

+ϕ̇(x, t)EIϕ′(x, t)|x=`
x=ξ+ .

(2.8)

Under these feedback controls we have

———————————————————————————————————————-

dE(t)
dt =



−α|ẇ(`, t)|2 − β|ϕ̇(`, t)|2 − ϕ(`, t)ϕ̇(`, t)− w(`, t)ẇ(`, t), if (2.1) holds
−α|ẇ(`, t)|2 − β|ϕ̇(`, t)|2, if (2.2) holds
−β|ϕ̇(`, t)|2 − ϕ(`, t)ϕ̇(`, t), if (2.3) holds
−α|ẇ(ξ, t)|2 − β|ϕ̇(ξ, t)|2 if (2.4) holds
−α−1|K(w′(`, t)− ϕ(`, t))|2 − β|ϕ̇(ξ, t)|2 if (2.5) holds

(2.9)

———————————————————————————————————————-
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For the distributed feedback controls we have

dE(t)
dt = −

∫ `
0 a(x)|ẇ(x, t)|2dx

−
∫ `
0 b(x)|ϕ̇(x, t)|2dx.

(2.10)

From above we see easily that energy of the closed
loop system decays, but we do not know whether
energy of the systems decays exponentially.

3 Test of stability for the closed

loop system

In this section we shall give assertion for stability
of the closed loop system using theorem 1.1. For
different system we shall give distinct test system.

3.1 Cases of pointwise and boundary

feedback controls

For these cases we always take (1.9) as test sys-
tem. More precisely, for closed loop system with
boundary condition (2.1), we take test system as

ρẅ(x, t)−Kw′′(x, t) = 0, 0 < x < `, t > 0
Iρϕ̈(x, t)− EIϕ′′(x, t) = 0, 0 < x < `, t > 0,

w′(0, t) = 0, ϕ′(0, t) = 0,

Kw′(`, t) = −αẇ(`, t)− w(`, t),
EIϕ′(`, t) = −βϕ̇(`, t)− ϕ(`, t).

(3.1)
It is easy to prove that test system (3.1) is a
Riesz spectral system when α 6=

√
ρ/K and β 6=√

Iρ/EI, whose frequencies satisfy Reλj,n < 0, j =
1, 2, and their asymptotic values are given by

λ1,n =



1
2` ln

∣∣∣∣α−
√

ρ/K

α+
√

ρ/K

∣∣∣∣ + inπ
` + O( 1

n),

if α >
√

ρ/K,

1
2` ln

∣∣∣∣α−
√

ρ/K

α+
√

ρ/K

∣∣∣∣ + i(2n+1)π
2` + O( 1

n),

if α <
√

ρ/K.

(3.2)
and

λ2,n =



1
2` ln

∣∣∣∣β−
√

Iρ/EI

β+
√

Iρ/EI

∣∣∣∣ + inπ
` + O( 1

n),

if β >
√

Iρ/EI,

1
2` ln

∣∣∣∣β−
√

Iρ/EI

β+
√

Iρ/EI

∣∣∣∣ + i(2n+1)π
2` + O( 1

n),

if β <
√

Iρ/EI.

(3.3)

We assert from theorem 1.1 that this system is
exponentially stable.

For closed loop system with boundary condi-
tion (2.2), we can take test system as

ρẅ(x, t)−Kw′′(x, t) = 0, 0 < x < `, t > 0
Iρϕ̈(x, t)− EIϕ′′(x, t) = 0, 0 < x < `, t > 0,

w(0, t) = 0, ϕ(0, t) = 0,

Kw′(`, t) = −αẇ(`, t),
EIϕ′(`, t) = −βϕ̇(`, t).

(3.4)
It is easy to prove that test system (3.4) is a Riesz
spectral system as α 6=

√
ρ/K and β 6=

√
Iρ/EI,

whose frequencies are given by

λ1,n =



1
2` ln

∣∣∣∣α−
√

ρ/K

α+
√

ρ/K

∣∣∣∣ + inπ
` ,

if α >
√

ρ/K,

1
2` ln

∣∣∣∣α−
√

ρ/K

α+
√

ρ/K

∣∣∣∣ + i(2n+1)π
2` ,

if α <
√

ρ/K.

(3.5)

and

λ2,n =



1
2` ln

∣∣∣∣β−
√

Iρ/EI

β+
√

Iρ/EI

∣∣∣∣ + inπ
` ,

ifβ >
√

Iρ/EI,

1
2` ln

∣∣∣∣β−
√

Iρ/EI

β+
√

Iρ/EI

∣∣∣∣ + i(2n+1)π
2` ,

ifβ <
√

Iρ/EI.

(3.6)

Again we deduce from theorem1.1 that the system
decays exponentially.

Similarly, for closed loop system with bound-
ary condition (2.3), we take test system as

ρẅ(x, t)−Kw′′(x, t) = 0, 0 < x < `, t > 0
Iρϕ̈(x, t)− EIϕ′′(x, t) = 0, 0 < x < `, t > 0,

w(0, t) = 0, EIϕ′(0, t) = 0,

w(`, t) = 0,

EIϕ′(`, t) = −βϕ̇(`, t)− ϕ(`, t).
(3.7)

It is easy to prove that test system (3.7) is a Riesz
spectral system as β 6=

√
Iρ/EI. However test

system is unstable, so the closed loop system is
not exponentially stable.

Using above approach we can check stability of
closed loop system with boundary condition (2.4)
or (2.5) by test system.
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3.2 Case of distributed feedback con-

trols

For closed loop system with distributed feedback
controls (2.6), we can take (1.8) associated with
any one of five-type boundary conditions as test
system. In order to simplify the calculation, we
can take the dominant part of boundary con-
ditions, for example, for (B2) we can take test
boundary conditions as{

w(0, t) = ϕ(0, t) = 0,

Kw′(`, t) = EIϕ′(`, t) = 0.
(3.8)

Thus corresponding test system is

ρẅ(x, t)−Kw′′(x, t) + a(x)ẇ(x, t) = 0,

x ∈ (0, `), t > 0,

Iρϕ̈(x, t)− EIϕ′′(x, t) + b(x)ϕ̇(x, t) = 0,

x ∈ (0, `), t > 0,

w(0, t) = ϕ(0, t) = 0,

Kw′(`, t) = EIϕ′(`, t) = 0.

(3.9)
The stability of this test system is equivalent to
stability of wave equation

ξ2ẅ(x, t)− w′′(x, t) + ã(x)ẇ(x, t) = 0,

x ∈ (0, `), t > 0, ξ > 0,

w(0, t) = 0, w′(`, t) = 0.

(3.10)
Corresponding boundary eigenvalue problem is

λ2ξ2w(x)− w′′(x) + ã(x)λw(x) = 0,

x ∈ (0, `),
w(0) = 0, w′(`) = 0.

(3.11)

Let u(x) = w′(x)+λξw(x) ,v(x) = w′(x)−λξw(x)
and W (x) = (u(x), v(x))τ . Then we have

dW (x)
dx

= [λM + M0(x)]W (x)

where

M =

[
ξ 0
0 −ξ

]
and

M0(x) =

[
ã(x)
2ξ − ã(x)

2ξ
ã(x)
2ξ − ã(x)

2ξ

]
,

corresponding boundary conditions can be rewrit-
ten as[

1 −1
0 0

]
W (0) +

[
0 0
1 1

]
W (`) = 0. (3.12)

According to asymptotic expansion theorem of
fundamental matrix( cf. R. Mennicken and M.
Möller’s book[13, pp83, Theorem 2.8.2]), we have

W (x) = [A0(x) + λ−1A1(x, λ)]eλMxη, η ∈ C2,

(3.13)
where

A0(x) =

[
e

1
2ξ

∫ x
0 ã(s)ds 0

0 e
− 1

2ξ

∫ x
0 ã(s)ds

]
,

eλMx =

[
eλξx 0
0 e−λξx

]
,

and A1(x, λ) is uniformly bounded on [0, `] and
|λ| > γ > 0 and A1(0, λ) = 0. Substituting (3.13)
into (3.12) leads to[

1 −1
e

1
2ξ

∫ `
0 ã(s)ds+λξ` + [0]0 e−

1
2ξ

∫ `
0 ã(s)ds−λξ` + [0]0

]
η = 0,

(3.14)
where [a]0 means [a]0 = a+λ−1a1(λ) and a1(λ) is
bounded. Thus asymptotic values of eigenvalues
of wave equation are determined via

e2λξ` = −e
− 1

ξ

∫ `
0 ã(s)ds

,

they are given by

λn = − 1
2ξ2`

∫ `

0
ã(s)ds +

(2n + 1)πi

2ξ`
, n ∈ Z.

Therefore asymptotic values of eigenvalues of test
system (3.9) are given by

λ1,n = − 1
2ρ`

∫ `

0
a(s)ds +

(2n + 1)πi

2
√

ρ/K`
, n ∈ Z.

λ2,n = − 1
2Iρ`

∫ `

0
b(s)ds +

(2n + 1)πi

2
√

Iρ/EI`
, n ∈ Z.

Using a result in [12], we can prove that test sys-
tem is a Riesz spectral system. Therefore test sys-
tem is exponentially stable, so is system (2.6) with
boundary (B2).

Remark 3.1 In this paper we always require test
system being a Riesz spectral system. If the test
system is not a Riesz system, then eigenvalues of
test system need not to be asymptotic values of
eigenvalues of the closed loop system. So we must
keep this in mind.
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