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Abstract - Time frequency representations (TFR) have been assessed with respect to time and frequency 
resolution using a simulated and real heart rate variability data, HRV. The Wigner-Ville Distribution proved to 
have a difficult interpretation due to the presence of the cross-terms. Choi-Williams, CW, and Signal-dependent 
radially Gaussian kernel, SD, TFRs used different techniques for cross-terms suppression and had comparative 
results due to the auto-terms geometry around the center in the ambiguity domain, with a trade-off between 
cross-terms suppression and auto-terms smoothing. An elevated vagal and a reduced sympathetic activity in the 
clinostatic position, and a reduced vagal and elevated sympathetic activity in the orthostatic position, 
respectively, have been detected in HRV by CW and SD during the tilt-up test.          
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1 Introduction 

Noninvasive techniques are more often employed 
in assisting the medical diagnosis. Heart rate 
variability analysis provides important markers in the 
assessment of the autonomic nervous system. The 
importance of this analysis is emphasized by the 
efforts done for standardization of measurement, 
physiological interpretations and clinical use [1]. 

Studies performed in the cases of myocardial 
infarction [5], [8], diabetic cardiac autonomic 
neuropathy [4], cardiac transplant [1], hypovolemic 
shock [1], respectively in the case of the autonomic 
nervous system tests [2], have distinguished the 
pathological or physiological states of the autonomic 
nervous system reflected in the spectral analysis. 

Heart rate variability is the result of the action of 
complex neural control mechanisms [1], [3], [5]. 
The role of these mechanisms is to maintain the 
controlled parameters within physiological range. 
Cardiac control mechanisms influence in a high 
degree the pattern of the HRV by efferent 
sympathetic and vagal activities directed to the sinus 
node. Largely synchronous with each cardiac cycle, 
the sinus node discharge can be modulated by 
central, vasomotor and respiratory centers, and 
peripheral, arterial blood baroreceptors and 

respiratory movements [7]. Analysis of these 
induced fluctuations allows the assessment of the 
activity of the central oscillators, the sympathetic 
and vagal efferent outflow, humoral factors and the 
sinus node. 

HRV power spectrum, during short time analysis, 
consists of the following spectral components [1]:  
� VLF, very low frequency (range below 0.04 

Hz). The nonharmonic component with no coherent 
properties, affected by algorithms and baseline or 
trend removal, is commonly accepted as a major 
constituent. 
� LF, low frequency (range from 0.04 to 0.15 

Hz). Some studies suggest that LF, when expressed 
in normalized units, is a quantitative marker of 
sympathetic modulations, other studies consider LF 
as reflecting both sympathetic and vagal activity [8]. 
� HF, high frequency (range from 0.15 to 0.4 

Hz). The vagal activity is considered the major 
contributor. This component is in synchrony with 
the respiration rate, in the range 0.18 to 0.4 Hz, and 
it is considered to be an expression of the respiration 
disturbances mediated by the vagal activity [3], [6]. 

Spectral analysis of HRV represents a challenging 
alternative for statistical and geometrical 
measurements from the time domain analysis. The 
analysis of transient episodes in the heart rate 
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variability systems allows the evaluation of the 
sympato-vagal balance in relation with the stimulus 
onset. The performance with respect of time and 
frequency resolution of improved versions of the 
Wigner-Ville Distribution has been tested for a signal 
simulating a sudden change in spectral components 
specific to HRV. An example of HRV spectral 
analysis during the tilt-up test was performed.   
 
 

2. Methods 
 
2.1 Quadratic time-frequency representations - 
theoretical considerations 

TFR can be a linear or quadratic (bilinear) 
function of signal [9]. Among the linear TFRs are 
the Short Time Fourier Transform, STFT, and the 
time-frequency version of the Wavelet Transform, 
WT. The linearity of a TFR is a desirable propriety, 
but the quadratic structure has a closer interpretation 
to a time-frequency energy distribution, taking into 
account that the energy is a quadratic function of 
signal [9], [10]. 

The relations between the concept of 
instantaneous power px(t) = |x(t)2|, the spectral 
energy density Px(f)=|X(f)2| and the “energetic” TFR 
are given by the marginal properties: 
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As a consequence, the signal energy Ex can be 
derived by integrating Tx(t,f) over the entire time-
frequency plane (3): 
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The relations (1), (2) don’t warrant the interpretation 
of Tx(t,f) as a “time-frequency energy density” at 
every point in the time-frequency plane. This is due to 
the uncertainty principle, which states that the energy 
of the signal cannot be known with any small time 
and frequency resolution [9], [10].  

The linearity property of a TFR allows the use of 
the superposition principle: the sum of two signals x1, 
x2 is the sum of their TFRs, Tx1 and Tx2. The same 
principle cannot be applied to quadratic TFRs. The 
quadratic superposition principle, in the case of a N-
component x(t) =

k
ckxk t( )∑ states that: 

� to each signal component ckxk(t) corresponds an 
auto-component |ck|2Txk(t,f), the auto-term, 

� to each pair of signal components ckxk(t) and 
clxl(t), k≠l, corresponds a cross-component 
ckcl

*Txk,xl(t,f)+ clck
*Txl,xk(t,f), the cross-term. The 

complex conjugate is denoted by the symbol *. 
The analysis of a N-component signal is more 

difficult to interpret as N rises. TFR will consist of N 
signal terms and N(N-1)/2 interference terms.  

Wigner-Ville Distribution, WVD, has very good 
time-frequency resolution but substantial interference 
terms. 
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is the instantaneous autocorrelation of the complex 
signal x(t). Analogous, but with a different physical 
meaning, the symmetrical ambiguity function, AF, is 
defined as the inverse Fourier Transform of the 
instantaneous autocorrelation function, with respect to 
the time variable t: 

∫=
t

tj
xx dtetRAF πθττθ 2),(),(       (6) 

Thus, the WD and AF are related through the 
two-dimensional Fourier Transform:   
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The interference geometry analysis in the 
ambiguity domain shows a concentration of the 
auto-terms around the origin and a spread of the 
interference terms away from origin. This 
conclusion allows designing of a weighting kernel 
Φ(θ,τ) in the ambiguity domain, and the generalized 
Cohen’s class of TFRs is given by:  

∫∫ +−Φ=
τθ

τθπ τθτθτθ
,

)(2),(),(),( ddeAFftC ftj
x  (7) 

The kernel should have the shape of a 2D low pass 
filter, thus, the auto-terms around the origin in the 
ambiguity domain are less weighted than the cross-
terms located away from origin. 

Choi-William TFR, CW, has the exponential kernel 

ΦCW e( , )θ τ
θ τ

σ=
−

2 2

         (8) 
The σ parameter, the volume, sets the “cut-off 

frequency” of the low pass filter, its value being a 
compromise between the degree of cross-terms 
canceling and auto-terms smoothing [13]. Some 
signals that have frequency modulated components 
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have the auto-terms geometry along a specific angle, 
away from axis [11], [12], [13], [15]. Such signals 
require another shape of the kernel, or the increase of 
the volume on the cost of cross-terms presence. 

 The interference geometry depends on the signal. 
Better results can be obtained if the kernel, under 
some constraints, like a fix volume of the passing 
region, changes its shape according to this geometry.  

The Signal-dependent radially Gaussian kernel 
TFR, SD, has the following kernel [11], [12]: 

  Φ Ψ
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where σ(Ψ) is called the spread function, controlling 
the “spread” of the Gaussian at radial angle Ψ, 

Ψ = arctan
τ
θ

          (10) 

The spread function determines the basic shape of 
the equal energy contours of the kernel. If the kernel is 
expressed in polar coordinates, with r = +θ τ2 2  
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r
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The kernel shape is parameterized by the one-
dimensional function σ(Ψ). Finding the optimal 
radially Gaussian kernel for a signal is equivalent with 

finding the optimal spread function σopt(Ψ). The 
optimization problem is given by: 
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which can be written  as: 
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 This is equivalent to a fix volume of kernel in the 
ambiguity domain. The solution is found by using a 
similar method with the gradient-projection algorithm 
[11]. 
 

2.2 Simulated and real HRV data 

Two simulated signals were computed as: 

a)      (15) x n e e ej f n j f n j f n
1

2 2 2 21[ ] = + +− − −π π 3π

3π

3π

   n = 1..64 sec, f1 = 0.04 Hz, f2 = 0.12 Hz, f3 = 0.25 Hz, 

b) ,     (16) x n e e ej f n j f n j f n
2

2 2 21 2[ ] = + +− − −π π

n = 1..32 sec, f1 = 0.04 Hz, f2 = 0.15 Hz, f3 = 0.3 Hz 

 ,        x n e e ej f n j f n j f n
2

2 2 21 2[ ] = + +− − −π π

 n = 33..64 sec, f1 = 0.12 Hz, f2 = 0.2 Hz, f3 = 0.4 Hz, 

having a spectrum corresponding to the VLF, LF and 
HF components specific to HRV. 

The CW kernel (Fig.1C) had a symmetric geometry 
concentrated along the axis and around the center of 

Fig. 1 The kernels for SD: (A) x1, (B) x2 with α = 4,
the number of iteration for optimization problem N = 60,
and for CW: (C) x1 and x2, with σ = 4. Fig. 2 The spread function: (A) x1 and (B) x2. 
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the ambiguity domain. The SD kernels corresponding 
to x1 and x2 signals (Fig.1A and B) had variable 
geometry depending on the signal components. This 
geometry was given by the solution of the 
optimization problem, the spread function (Fig.2A 
and B). In the case of x1 there was no change in the 
spectrum and the shape of the kernel tends to be closer 
to axis, similar to the CW kernel, whereas a higher 
concentration around the center rather than a spread 
along the axis could be noticed due to a change in 
frequency after a time of 32 s. 

 Two sets of ECG recordings, corresponding to 
the clinostatic position (r1) and the orthostatic 
position (r2) were analysed. The ECG was sampled 
with 256 Hz. The RR intervals (NN normal to 

normal series, expressed in ms) were extracted and 
cubic spline interpolated at 250 ms. An analytic 
signal, which has no components at negative 
frequencies in the spectrum, was computed from the 
interpolated series. This contributes to a reduced 
number of cross-terms by avoiding the pairs with 
components at negative frequencies in the WVD. 

 
 

3. Results 

In Fig.3 are presented the WVD, CW, and SD for 
the simulated HRV signals. WVD has a very good 
frequency resolution but the cross-terms make 
almost impossible the interpretation in the case of 
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Fig. 3 Simulated HRV analysis with Wigner-Ville Distribution (C), Choi-William TFR (B) and Signal-dependent
radially Gaussian kernel TFR (A) for the cases: (left) signal x1 with no time change spectrum, with frequency
components located at 0.04, 0.12 and 0.25 Hz;  (right) signal x2, with spectrum change at time = 32 s from
frequency components located at 0.03, 0.15, 0.3 Hz to 0.12, 0.2, 0.4 Hz ; the same volume parameter of the filter
(σ = 4 for CW and α=4 for SD) and the iteration number for the optimization problem N = 60. 
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the signal x2. Any processing in the ambiguity 
domain results in a decrease in frequency resolution, 
obtaining an auto-terms smearing, as can be seen in 
the case of CW and more in the case of SD. 

The auto-terms can be identified at 0.04, 0.12 and 
0.25 Hz in the WVD of the signal x1. The cross-
terms are characterized by time oscillations and they 
are located in the middle of a pair of auto-terms, 
with respect with frequency. CW of the signal x1 has 
a lower frequency resolution than WVD and the 
cross-terms are canceled in a degree between 40 and 
73%. This degree can be improved if the volume of 
the CW kernel is decreased, but with the cost of the 
auto-terms smoothing. SD of the signal x1 has very 
good cross-terms canceling degree (up to 100%), 
but the frequency resolution is further decreased. 

In the WVD of the signal x2 is very difficult to 
identify the auto-terms. The most “readable” TFR 
for the signal x2 is the SD, followed by CW. The 
spectral components can be easily identified. The 
sudden transition at the time of 32 s is well 
represented in CW and SD (with a slight 
improvement) and impossible to detect in WVD. 

The analysis of two data series of the interpolated 
RR intervals obtained from ECG recordings is 
shown in Fig.4. The clinostatic position (r1, Fig.4 
left) is characterized by an elevated vagal (high HF 
component around 0.3 Hz) and reduced sympathetic 
(relative low LF between 0.05 and 0.1 Hz) activity. 
The tilt-up to the orthostatic position changes the 
balance in the autonomic nervous control of the 
heart (r2, Fig.4 right) by reducing the vagal 
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Fig. 4 HRV (RR intervals) analysis with Wigner-Ville Distribution (C), Choi-William TFR (B) and Radially
Gaussian Kernel Signal- dependent radially Gaussian kernel (A) TFRs for: (left) r1 recording, orthostatic
position, (right) r2 recording, clinostatic position; the same volume parameter of the filter (σ = 4 for CW and
α=4 for SD) and the iteration number for the optimization problem N = 60.
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component (HF) and increasing in sympathetic 
component (LF). The performance of CW relative to 
SD is similar with case of the simulated signals. 

 
4. Conclusion 

In this work was presented the application of 
three known time-frequency representations, 
Wigner-Ville Distribution, Choi-William TFR and 
Signal-dependent TFR with radially Gaussian kernel 
for heart rate variability analysis. The simulation 
and case study showed that the performances of the 
WVD could be improved by using a weighting 
kernel in the ambiguity domain. CW TFR and SD 
TFR have comparative results, both of them 
presenting advantages and disadvantages like trade-
off between auto-terms smearing and cross-terms 
canceling. 
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