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Abstract. The article is devoted to the study of almost periodic solutions

of difference Beverton-Holt equation. We prove that such equation admits
an invariant continuous section (an invariant manifold). Then, we obtain the

conditions for the existence of an almost periodic solution. We study this

problem in the framework of non-autonomous dynamical systems (cocycles).
The main tool in the study of almost periodic solutions in our work are the

continuous invariant sections (selectors) of cocyle.

1. Introduction

In the qualitative theory of differential and difference equations non-local prob-
lems play the important role. It refers to questions of boundedness, periodicity,
almost periodicity, asymptotic behaviour, dissipativity etc. The present work be-
longs to this direction and is dedicated to the study of almost periodic solutions of
non-autonomous Beverton-Holt difference equations. Almost periodic solutions of
difference equations arise in numerouse theories, from Dynamical Systems [4, 10],
Dynamical Economics [8], Chaos [1], Physics [14] and their references.

Below we will give a new approach concerning the study of almost periodic difference
equations. We study the problem of almost periodicity in the framework of non-
autonomous dynamical systems (cocyles) with discrete time. The main tool in the
study of almost periodic solutions in our work are the continuous invariant sections
(selectors) of cocyle.

This paper is organized as follows.

In Section 2 we give some notions and facts from the theory of non-autonomous
dynamical systems (cocycles). In particularly, we present the important for our
work notion of continuous section of non-autonomous dynamical systems.

Section 3 is dedicated to notion of almost periodic motion of dynamical systems.
This section contains a very important construction (see example 3.8) of non-
autonomous dynamical system generated by non-autonomous difference equation.
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In section 4 we present the main result of our paper (Theorem 4.7) whiche give
the sufficient conditions of existence at least one almost periodic solution of non-
autonomous Beverton-Holt difference equation.

2. Continuous Invariant Sections of Non-Autonomous Dynamical
Systems

Let S be a group of real (R) or integer (Z) numbers, T (S+ ⊆ T) be a semigroup of
the additive group S.

Definition 2.1. Let (X,h, Y ) be a bundle fiber [3, 9]. The mapping γ : Y → X is
called a section (selector) of the bundle fiber (X,h, Y ), if h(γ(y)) = y for all y ∈ Y.

Remark 2.2. Let X := W × Y . Then γ : Y → X is a section of the bundle fiber
(X,h, Y ) (h := pr2 : X → Y ), if and only if γ = (ψ, IdY ) where ψ : W →W.

Definition 2.3. Let (X,T1, π) and (Y,T2, σ) (S+ ⊆ T1 ⊆ T2 ⊆ S) be two dynam-
ical systems. The mapping h : X → Y is called a homomorphism (respectively iso-
morphism) of the dynamical system (X,T1, π) on (Y,T2, σ), if the mapping h is con-
tinuous (respectively homeomorphic) and h(π(x, t)) = σ(h(x), t) ( t ∈ T1, x ∈ X).

Definition 2.4. A triplet 〈(X,T1, π), (Y,T2, σ), h〉, where h is a homomorphism
of (X,T1, π) on (Y,T2, σ) and (X,h, Y ) is a bundle fiber [3, 9], is called a non-
autonomous dynamical system.

Let W,Y be two metric spaces and (Y,T2, σ) be a semi-group dynamical system on
Y .

Definition 2.5. Recall [13] that a triplet 〈W,ϕ, (Y,T2, σ)〉 (or briefly ϕ) is called
a cocycle over (Y,T2, σ) with the fiber W , if ϕ is a mapping from T1 ×W × Y to
W satisfying the following conditions:

1. ϕ(0, x, y) = x for all (x, y) ∈W × Y ;
2. ϕ(t+ τ, x, y) = ϕ(t, ϕ(τ, x, y), σ(τ, y)) for all t, τ ∈ T1 and (x, y) ∈W ×Y ;
3. the mapping ϕ is continuous.

Let X := W × Y , and define the mapping π : X × T1 → X by the equality:
π((u, y), t) := (ϕ(t, u, y), σ(t, y)) (i.e. π = (ϕ, σ)). Then it is easy to check that
(X,T1, π) is a dynamical system on X, which is called a skew-product dynamical
system [2], [13]; but h = pr2 : X → Y is a homomorphism of (X,T1, π) onto
(Y,T2, σ) and hence 〈(X,T1, π), (Y,T2, σ), h〉 is a non-autonomous dynamical sys-
tem.

Thus, if we have a cocycle 〈W,ϕ, (Y,T2, σ)〉 over the dynamical system (Y,T2, σ)
with the fiber W , then there can be constructed a non-autonomous dynamical sys-
tem 〈(X,T1, π), (Y,T2, σ), h〉 (X := W × Y ), which we will call a non-autonomous
dynamical system generated (associated) by the cocycle 〈W,ϕ, (Y,T2, σ)〉 over (Y,
T2, σ).

Example 2.6. Consider the equation

(1) xn+1 = f(σ(n, y), xn) (y ∈ Y ),
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where (Y,T2, σ) (T2 ⊆ Z) is a dynamical system on Y and f : Y ×W → W is a
continuous mapping.

Denote by ϕ(n, u, y) the solution of equation (1) with initial condition ϕ(0, u, y) = u.
From the general properties of difference equations it follows that:

(i) ϕ(0, u, y) = u for all u ∈W and y ∈ Y ;
(ii) ϕ(n+m,x, y) = ϕ(n, ϕ(m,x, y), σ(m, y)) for all n,m ∈ T1 ⊆ Z and (x, y) ∈

W × Y ;
(iii) the mapping ϕ is continuous.

Thus every equation (1) generate a cocycle 〈W,ϕ, (Y,T2, σ)〉 over (Y,T2, σ) with
fiber W .

Definition 2.7. A mapping γ : Y → X is called an invariant section of the
non-autonomous dynamical system 〈(X,T1, π), (Y,T2, σ), h〉, if it is a section of
the bundle fiber (X,h, Y ) and γ(Y ) is an invariant subset of the dynamical system
(X,T2, π) (or, equivalently,⋃

{πtγ(q) : q ∈ (σt)−1(σty)} = γ(σty)

for all t ∈ T2 nd y ∈ Y, where πt := π(t, ·)).

Theorem 2.8. [5, Ch.2,p.83] Let 〈(X,T1, π), (Y,T2, σ), h〉 be a non-autonomous
dynamical system and the following conditions be fulfilled:

(i) the space Y is compact;
(ii) T2 = Z or R;
(iii) the non-autonomous dynamical system 〈(X,T1, π), (Y,T2, σ), h〉 is con-

tracting in the extended sense, i.e. there exist positive numbers N and
ν such that

(2) ρ(π(t, x1), π(t, x2)) ≤ Ne−νtρ(x1, x2)

for all x1, x2 ∈ X (h(x1) = h(x2)) and t ∈ T1;
(iv) Γ(Y,X) = {γ | γ : Y → X is a continuous mapping and h(γ(y)) = y for

all y ∈ Y } 6= ∅.

Then

(i) there exists a unique invariant section γ ∈ Γ(Y,X) of the non-autonomous
dynamical system 〈(X,T1, π), (Y,T2, σ), h〉;

(ii) the following inequality holds

(3) ρ(π(t, x), π(t, γ(h(x)))) ≤ Ne−νtρ(x, γ(h(x)))

for all x ∈ X and t ∈ T.

3. Almost periodic motions of dynamical systems

Let (X,Z+, π) be a dynamical system.

Definition 3.1. A number m ∈ Z+ is called an ε-almost period of the point x ∈ X,
if ρ(π(m+ n, x), π(n, x)) < ε for all n ∈ Z+.
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Definition 3.2. The point x is called almost periodic, if for any ε > 0 there exists
a positive number l ∈ Z+ such that on every segment (in Z+) of length l there may
be found an ε-almost period of the point x.

Denote Mx = {{tn} ⊂ Z+ | {π(tn, x)} is convergent}.

Theorem 3.3. ([11], [12]) Let (X,Z+, π) and (Y,Z+, σ) be two dynamical systems.
Assume that h : X → Y is a homomorphism of (X,Z+, π) onto (Y,Z+, σ). If a
point x ∈ X is almost periodic, then the point y := h(x) is also almost periodic and
Mx ⊆ My.

Definition 3.4. A solution ϕ(n, u, y) of equation (1) is said to be almost peri-
odic, if the point x := (u, y) ∈ X := E × Y is an almost periodic point of the
skew-product dynamical system (X,Z+, π), where π := (ϕ, σ), i.e. π(n, (u, y)) :=
(ϕ(n, u, y), σ(n, y)) for all n ∈ Z+ and (u, y) ∈ E × Y .

Let E be a Banach space with the norm | · |.

Lemma 3.5. Suppose that u ∈ C(Y,E) satisfies the condition

(4) u(σ(n, y)) = ϕ(n, u(y), y)

for all n ∈ Z+ and y ∈ Y . Then the map h : Y → X, defined by

(5) h(y) := (u(y), y)

for all y ∈ Y , is a homomorphism of (Y,Z+, σ) onto (X,Z+, π), where X := E×Y
and π := (ϕ, σ).

Proof. This assertion follows from equalities (4) and (5) �

Remark 3.6. A function u ∈ C(Y,E) with property (4) is called a continuous
invariant section (or an integral manifold) of non-autonomous difference equation
(1).

Theorem 3.7. If a function u ∈ C(Y,E) satisfies condition (4) and a point y ∈ Y
is almost periodic, then the solution ϕ(n, u(y), y) of equation (1) also is almost
periodic.

Proof. This statement follows from Theorem 3.3 and Lemma 3.5. �

Example 3.8. Consider the equation

(6) un+1 = f(n, un)

where f ∈ C(Z+×E,E); here C(Z+×E,E) is the space of all continuous functions
Z+ × E → E) equipped with metric defined by equality

d(f1, f2) :=
+∞∑
1

1
2n

dn(f1, d2)
1 + dn(f1, d2)

,

where dn(f1, d2) := max{ρ(f1(k, u), f2(k, u)) | k ∈ [0, n], |u| ≤ n}, there is defined
a distance on C(Z+×E,E) which generates the topology of pointwise convergence
with respect to n ∈ Z+ uniformly with respect to u on every bounded subset from
E.
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Along with equation (6), we will consider the H-class of equation (6)

(7) vn+1 = g(n, vn) (g ∈ H(f)),

where H(f) = {fm | m ∈ Z+} and the over bar denotes the closure in C(Z+×E,E),
and fm(n, u) = f(n + m,u) for all n ∈ Z+ and u ∈ E. Denote by (C(Z+ ×
E,E),Z+, σ) the dynamical system of translations. Here σ(m, g) := gm for all
m ∈ Z+ and g ∈ C(Z+ × E,E).

Let Y be the hull H(f) of a given function f ∈ C(Z+ × E,E) and denote the
restriction of (C(Z+ × E,E),R, σ) on Y by (Y,Z+, σ). Let F : E × Y → E be a
continuous map defined by F (u, g) = g(0, u) for g ∈ Y and u ∈ E. Then equation
(7) can be rewritten in this form:

un+1 = F (σ(n, y), un)

where y := g and σ(n, y) := gn.

Definition 3.9. The function f ∈ C(Z+ × E,E) is said to be almost periodic if
f ∈ C(Z+×E,E) is a almost periodic point of the dynamical system of translations
(C(Z+ × E,E),Z+, σ).

If the function f ∈ C(Z+ ×E,E) is almost periodic, then the set Y := H(f) is the
compact minimal set of the dynamical system (C(Z+ × E,E),Z+, σ) consisting of
almost periodic functions.

4. Almost periodic solutions of Beverton-Holt equation

The periodic Beverton-Holt equation

(8) xn+1 =
µKnxn

Kn + (µ− 1)xn

(Kn+k = Kn) has been studied by Jim Cushing and Shandelle Henson [6] and Saber
Elaydi and Robert J. Sacker [7].

Below we will suppose that the following conditions hold:

(C1) the squence {Kn}n∈Z is almost periodic;
(C2) α < β are two positive constants such that α ≤ Kn ≤ β for all n ∈ Z;
(C3) µ > (β

α )2.

Denote by ϕ(n, u, f) the solution of equation

(9) xn+1 = f(n, xn)

with initial condition ϕ(0, u, f) = u.

Lemma 4.1. Let fi : Z+ × R+ → R+ (i = 1, 2). Suppose that the following
conditions hold:

(i) u1, u2 ∈ R+ and u1 ≤ u2 (respectively, u1 < u2);
(ii) f1(n, x) ≤ f2(n, x) (respectively, f1(n, x) < f2(n, x)) for all n ∈ Z+ and

x ∈ R+;
(iii) the function f2 is monotone non-decreasing (respectively, strictly monotone

increasing) with respect to variable x ∈ R+.
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Then ϕ(n, u1, f1) ≤ ϕ(n, u2, f2) (respectively, ϕ(n, u1, f1) < ϕ(n, u2, f2)) for all
n ∈ Z+.

Proof. Let u1 ≤ u2 (respectively, u1 < u2), then we have

ϕ(1, u1, f1) = f1(0, u1) ≤ f2(0, u1) ≤ f2(0, u2) = ϕ(1, u2, f2).

(respectively, ϕ(1, u1, f1) = f1(0, u1) < f2(0, u1) < f2(0, u2) = ϕ(1, u2, f2)). Sup-
pose that ϕ(k, u1, f1) ≤ ϕ(k, u2, f2) (respectively, ϕ(k, u1, f1) < ϕ(k, u2, f2)) for all
k ≤ n, then we obtain

ϕ(n+ 1, u1, f1) = f1(n, ϕ(n, u1, f1)) ≤ f2(n, ϕ(n, u1, f1))

≤ f2(n, ϕ(n, u2, f2)) = ϕ(n+ 1, u2, f2)
(respectively, ϕ(n + 1, u1, f1) = f1(n, ϕ(n, u1, f1)) < f2(n, ϕ(n, u1, f1)) < f2 (n,
ϕ(n, u2, f2)) = ϕ(n+ 1, u2, f2)). �

Lemma 4.2. Let f(n, x) := µKnx
Kn+(µ−1)x for all n ∈ Z+ and x ∈ R+. Then the

following statements hold:

(i) f(n, x) ≥ 0 for all n ∈ Z+ and x ∈ R+;
(ii) f ′x(n, x) = µK2

n

(Kn+(µ−1)x)2 > 0 for all n ∈ Z+ and x ∈ R+;

(iii) f ′′x2(n, x) = − 2µ(µ−1)K2
n

(Kn+(µ−1)x)3 < 0 for all n ∈ Z+ and x ∈ R+.

Proof. This statement is straightforward. �

Lemma 4.3. Let f(n, x) := µKnx
Kn+(µ−1)x for all n ∈ Z+ and x ∈ R+. Then the

following statements hold:

(i) f(n, x)− x = (µ−1)x(Kn−x)
Kn+(µ−1)x for all n ∈ Z+ and x ∈ R+;

(ii) f(n,Kn) = Kn for all n ∈ Z;
(iii) f(n, x)− µ

µ−1Kn = − µK2
n

(Kn+(µ−1)x)(µ−1) < 0 for all n ∈ Z+ and x ∈ R+.

(iv) (a) ϕ(n, u, f) ≤ u for all u ≥ β;
(b) ϕ(n, u, f) ≥ u for all u ≤ α.

Proof. The first three statements are obvious. Let u ≥ β (respectively, u ≤ α),
then

ϕ(1, u, f)− u =
µK1u

K1 + (µ− 1)u
− u =

(µ− 1)u(K1 − u)
K1 + (µ− 1)u

≤ 0

(respectively, ϕ(1, u, f) − u ≥ 0). Suppose that ϕ(k, u, f) ≤ u (respectively,
ϕ(k, u, f) ≥ u) for all k ≤ n, then we obtain ϕ(n+1, u, f) = ϕ(1, ϕ(n, u, f), σ(n, f))
(σ(n, f)(k, x) := f(k + n, x) for all k ∈ Z and x ∈ R+). By Lemma 4.1 we have
ϕ(1, ϕ(n, u, f), σ(n, f)) ≤ ϕ(1, u, σ(n, f)) (respectively, ϕ(1, ϕ(n, u, f), σ(n, f)) ≥
ϕ(1, u, σ(n, f))) because σ(n, f)′x(m,x) = f ′x(n + m,x) ≥ 0 for all n.m ∈ Z and
x ∈ R+. for all k ∈ Z and x ∈ R+Since

ϕ(1, u, σ(n, f)) =
µKn+1u

Kn+1 + (µ− 1)u
,

then

ϕ(1, u, σ(n, f))− u =
(µ− 1)u(Kn+1 − u)
Kn+1 + (µ− 1)u

≤ 0
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because Kn+1 ≤ β (respectively, ϕ(1, u, σ(n, f) − u ≥ 0 because Kn+1 ≥ α).
Thus ϕ(n + 1, u, f) = ϕ(1, ϕ(n, u, f), σ(n, f)) ≤ u (respectively, ϕ(n + 1, u, f) =
ϕ(1, ϕ(n, u, f), σ(n, f)) ≥ u). �

Corollary 4.4. Let f(n, x) := µKnx
Kn+(µ−1)x for all n ∈ Z+ and x ∈ R+, then

(i)

(10) lim sup
n→+∞

|ϕ(n, u, f)| ≤ µ

µ− 1
β

for all u ∈ R+;
(ii) α − h ≤ ϕ(n, u, f) ≤ β + h for all n ∈ Z+ and u ∈ [α − h, β + h], where

0 < h < β−α
2 .

Proof. By Lemma 4.3 we have

ϕ(n+1, u, f)− µ

µ− 1
Kn = f(n, ϕ(n, u, f))− µ

µ− 1
Kn = − µK2

n

(Kn + (µ− 1)x)(µ− 1)
< 0

for all n ∈ Z+ and, consequently,

lim sup
n→+∞

|ϕ(n, u, f)| ≤ lim sup
n→+∞

µ

µ− 1
Kn ≤

µ

µ− 1
β.

The second statement of Corollary follows directly from Lemma 4.3. �

Lemma 4.5. Let f(n, x) := µKnx
Kn+(µ−1)x for all n ∈ Z+ and x ∈ R+ and 0 < h <

min{ µ
µ−1

β−α
2 , µ

µ−1α−
µ1/2

µ−1β}, then

(11) |f ′x(n, x)| ≤ k(h) :=
µβ2

(µα− h(µ− 1))2
< 1

for all x ∈ [α− h, β + h].

Proof. If 0 < h < min{ µ
µ−1

β−α
2 , µ

µ−1α} then

1
(Kn + (µ− 1)x)2

≤ 1
(µα− h(µ− 1))2

for all x ∈ [α− h, β + h] because α ≤ Kn ≤ β (∀ n ∈ Z). Thus we have

f ′x(n, x) =
µK2

n

(Kn + (µ− 1)x)2
≤ µβ2

(µα− h(µ− 1))2
:= k(h).

Since k(0) = β2

µα2 < 1, then 0 < k(h) < 1 for sufficiently small positive h. It easy

to check that k(h) = 1 iff h1,2 = µ
µ−1α ±

µ1/2

µ−1β and k(h) > 1 for all h ∈ (h1, h2).

Consequently 0 < k(h) < 1 for all 0 < h < min{ µ
µ−1

β−α
2 , µ

µ−1α−
µ1/2

µ−1β}. �

Corollary 4.6. Let f(n, x) := µKnx
Kn+(µ−1)x for all n ∈ Z+ and x ∈ R+ and 0 < h <

min{ µ
µ−1

β−α
2 , µ

µ−1α−
µ1/2

µ−1β}, then

(12) |ϕ(n, u1, f)− ϕ(n, u2, f)| ≤ k(h)n|u1 − u2|
for all u1, u2 ∈ [α− h, β + h] and n ∈ Z+.
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Proof. According to Lagrange’s formula we have

ϕ(n+ 1, u1, f)− ϕ(n+ 1, u2, f) = f(n, ϕ(n, u1, f))− f(n, ϕ(n, u2, f)) =
f ′x(n, ϕ(n, u1, f) + θn(ϕ(n, u2, f)− ϕ(n, u1, f)))(ϕ(n, u1, f)− ϕ(n, u2, f)),(13)

where θn ∈ (0, 1) for all n ∈ Z+. If u1, u2 ∈ [α − h, β + h], then by Corollary 4.4
we have ϕ(n, ui, f) ∈ [α − h, β + h] (∀ n ∈ Z+ and i = 1, 2) and, consequently,
ϕ(n, u1, f) + θn(ϕ(n, u2, f)− ϕ(n, u1, f)) ∈ [α− h, β + h] for all n ∈ Z+. Thus

(14) |f ′x(n, ϕ(n, u1, f) + θn(ϕ(n, u2, f)− ϕ(n, u1, f)))| ≤ k(h)

for all n ∈ Z+. From the relations (13)-(14) we obtain

|ϕ(n+ 1, u1, f)− ϕ(n+ 1, u2, f)| ≤ k(h)|ϕ(n, u1, f)− ϕ(n, u2, f)|
(∀n ∈ Z+) and, consequently,

|ϕ(n, u1, f)− ϕ(n, u2, f)| ≤ k(h)n|u1 − u2|
for all u1, u2 ∈ [α− h, β + h] and n ∈ Z+. �

Denote by C(Z,R+) the space of all numerical sequences M = {Mn}n∈Z equipped
with the distance

d(M1,M2) :=
∞∑

k=1

1
2k

dk(M1,M2)
1 + dk(M1,M2)

,

where M i := {M i
n}n∈Z (i = 1, 2) and dk(M1,M2) := max{|M1

n − M2
n| : n ∈

[−k, k]}. Let (C(Z,R),Z, σ) by the dynamical system of translations on C(Z,R)
(i.e. σ(n,M)(k) := Mn+k for all k ∈ Z) and H(M) := {σ(n,M) : n ∈ Z}, where
by bar we denote the closure in C(Z,R). This means that M̃ ∈ H(M) iff there
exists a sequence {mk} ⊂ Z such that M̃n = lim

k→+∞
Mn+mk

for every n ∈ Z.

Theorem 4.7. Let f(n, x) := µKnx
Kn+(µ−1)x for all n ∈ Z, x ∈ R+, 0 < h <

min{ µ
µ−1

β−α
2 , µ

µ−1α−
µ1/2

µ−1β} and the conditions (C1)-(C3) hold. Then the equation
(8) admits at least one almost periodic solution ϕ(n, u0, f).

Proof. Let f(n, x) := µKnx
Kn+(µ−1)x (∀ n ∈ Z and x ∈ R+) and Y := H(f), where

H(f) := {σ(n, f) : n ∈ Z} and by bar we denote the closure in C(Z×R+,R+). It
easy to see that g ∈ H(f) iff there exists a sequence K̃ ∈ H(K) (K̃ := {K̃n}n∈Z)
such that g(n, x) := µK̃nx

K̃n+(µ−1)x
for all n ∈ Z and x ∈ R+.

Consider the equation

(15) xn+1 = f(n, xn)

and denote by (R+, ϕ, (H(f),Z, σ)) the cocycle generated by equation (15) (see Ex-
amples 2.6 and 3.8). Let 〈(X,Z+, π), (Y,Z, σ), h〉 be the non-autonomous dynamical
system generated by cocycle ϕ (i.e. Y := H(f), (Y,Z, σ) is the shift dynamical sys-
tem on Y , X := R+ × Y , π := (ϕ, σ) and h := pr2 : X → Y ). Note that the
set X := [α − h, β + h] × Y ⊆ X by Corollary 4.4 is invariant with respect to dy-
namical system (X,Z+, π). Thus we can consider the non-autonomous subsystem
〈(X ,Z+, π), (Y,Z, σ), h〉 of system 〈(X,Z+, π), (Y,Z, σ), h〉. According to Corollary
4.6 the non-autonomous dynamical system 〈(X ,Z+, π), (Y,Z, σ), h〉 is contracting
because ρ(π(n, x1), π(n, x2)) ≤ k(h)nρ(x1, x2) for all x1, x2 ∈ X (h(x1) = h(x2)).
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By Theorems 2.8 and 3.7 there exists a continuous function u : H(f) → [α−h, β+h]
such that u(σ(n, g)) = ϕ(n, u(g), g) for all g ∈ H(f) and n ∈ Z+ and the solution
ϕ(n, u(f), f) of equation (15) is almost periodic. �
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