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Abstract: - Nonlinear adaptive filtering techniques, based on the Volterra model, are widely used for the 
nonlinearities identification in many applications. This paper proposes a new implementation of the third order 
LMS Volterra filter. A third order nonlinear system with memory is identified using the new LMS algorithm 
implementation for the Volterra kernels estimation. The accuracy of the proposed algorithm is appreciated by 
comparing the estimated third order kernel with the real kernel. It is demonstrated that the adaptive algorithm 
gives satisfactory convergence in different conditions of noise. The extension of the LMS algorithm 
implementation to higher order Volterra filters is also possible and involves a few simple changes.  
 
Key-Words: - Volterra kernels estimation, LMS algorithm, Nonlinear filter identification. 
 
1 Introduction 
The current trend in the telecommunication systems 
design is the identification and compensation of 
unwanted nonlinearities. It was demonstrated that 
unwanted nonlinearities in the system have a 
determinant effect on his performance [1]. There are 
various ways of reducing the effects of undesired 
nonlinearities [2],[3],[4]. The use of nonlinear 
models considered in this paper to characterize and 
compensate harmful nonlinearities offer a possible 
solution. The Volterra series have been widely 
applied as nonlinear system modelling technique 
with considerable success. However, at present, 
none general method exists to calculate the Volterra 
kernels for nonlinear systems, although they can be 
calculated for systems whose order is known and 
finite. When the nonlinear system order is unknown, 
adaptive methods and algorithms are widely used 
for the Volterra kernel estimation. The accuracy of 
the Volterra kernels will determine the accuracy of 
the system model and the accuracy of the inverse 
system used for compensation. The speed of kernel 
estimation process is also important. A fast kernel 
estimation method may allow the user to construct a 
higher order model that give an even better system 
representation. This paper proposes a new 
implementation of the third order LMS Volterra 
filter. A third order nonlinear system with memory 
is identified using the new LMS algorithm 
implementation for the Volterra kernels estimation.  

The proposed implementation of the third order 
LMS Volterra filter is based on the extended input 
vector and on the extended filter coefficients vector. 

Due to the linearity of the input-output relation of 
the Volterra model with respect to filter coefficients, 
the implementation of the LMS algorithm was 
realized as an extension of the LMS algorithm for 
linear filters. 
 
 
2 The Volterra Model 
This section will discuss some important aspects of 
the Volterra model. For a discrete-time and causal 
nonlinear system with memory, with input x[n] and 
output y[n], the Volterra series expansion is given 
by [4]: 
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where N represents the model nonlinearity degree, 
M is the filter memory and [ ]rr kkh ,,1 � is the rth 
order Volterra kernel. In the most general case 
Eq.(1) may use different memory for each 
nonlinearity order. A further simplification can be 
made to Eq.(1) by considering symmetric Volterra 
kernels. The kernel [ ]rr kkh ,,1 �  is symmetric if the 
indices can be interchanged without affecting its 
value. 

Choosing 3=N  in the Eq.(1), the input-output 
relationship of the third order Volterra filter can be 
expressed as: 
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The input-output relation can also be written in 
terms of nonlinear operators as indicated in Eq.(3). 
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In the above representations, the functions 
3,0, =ihi  represent the kernels associated to the 

nonlinear operators [ ][ ]nxH i . The nonlinear model 
described by the Equations (2) and (3) is called a 
third order Volterra model. Note that the above 
representations have the same memory for all 
nonlinearity orders. In this case the second order 
Volterra kernel is a (M×M) matrix. As presented in 
reference [5], the third order kernel is composed of 
M matrices having the dimension (M×M). 

If we consider symmetric kernels of memory M, 
the second order Volterra kernel requires the 
determination of M(M+1)/2 coefficients, while the 
third order kernel needs M(M+1)(M+2)/6 
coefficients [5].  
    The kernel estimation accuracy becomes the 
major problem in the practical applications. It was 
shown that the Volterra operators are homogeneous 
and generally not orthogonal. As a consequence of 
this last characteristic the Volterra kernels can not 
be measured using the cross correlation techniques 
and the values of the Volterra kernels will depend 
on the order of the Volterra representation being 
used [5],[6]. If the order of the Volterra model is 
changed the Volterra kernels will change and they 
must be recalculated. However, for an input having 
a symmetric amplitude density function, such as the 
Gaussian noise, the odd order Volterra functionals 
are orthogonal to the even order Volterra 
functionals. It follows that for this type of input, a 
2nd order Volterra model, with zero DC component, 
is an orthogonal model. This leads to direct Volterra 
kernel measurement by the cross-correlation method 
[7]. 

For higher order Volterra filters adaptive 
methods of kernels estimation are widely used. Due 
to the linearity  of the input-output relation 
according to the kernels, or filter coefficients, the 
application of adaptive algorithms for the Volterra 

filters implementation is quite simple. The 
nonlinearity is reflected only by the multiple 
products between the delayed versions of the input 
signal. 

Next we will introduce the input vectors 
corresponding to different orders kernels. The first 
order input vector, corresponding to a filter length 

3=M , is defined as follows: 
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If we consider equal  memories for different orders 
filters, “the second order input vector” can be 
expressed by: 
 

T
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For symmetric kernels only the elements jix , , 

having ji ≥ , of  
)2(

X , are selected in the input-
output relation of the Volterra filter. Hence “the 
second order input vector”, written in vector form 
is: 
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and it has the dimension ( 61× ). 

For "the third order input vector" we propose to 
express the multiple input delayed signal products in 
Eq.(2) by matrices elements. These matrices can be 
generated by multiplying “the second order input 
vector" defined according to Eq.(5) by the elements 
of the first order input vector. If we consider equal 
filters memories in Eq.(2), M=3, and symmetric 
kernels it follows: 
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    Hence, "the third order input vector" consists in 
fact, in that case, of 3 matrices as indicated in 
Equations (7)÷(9) and corresponds to a symmetric 
third order Volterra kernel. We can write  "the third 
order input vector" in vector form as follows: 
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Its dimension is ( 101× ). 

The defined input vectors will be used to 
implement the LMS Volterra filter in a typical 
nonlinear system identification application.   
 
 
3 Volterra Kernels Estimation by the 
LMS Adaptive Algorithm 
A typical adaptive technique used for Volterra 
kernels identification is shown in Fig.1. 

 
Nonlinear 
system 

LMS Volterra 
Filter 

 

x [n] 

d [n] 

y[n] 

e[n] 
+ 

 

Fig.1 Volterra kernel identification by adaptive 
method 

The Volterra filter of fixed order and fixed 
memory adapts to the unknown nonlinear system 
using one of the various adaptive algorithms. The 
use of adaptive techniques for Volterra kernel 
estimation has been intensively published. Most of 
the previous work considers 2nd order Volterra 
filters and some consider the 3rd order case. 

The most commonly used algorithm uses an 
LMS adaptation criterion. Although the LMS 
algorithm has some drawbacks, such as its 
dependence on signal statistics, which can lead to 
low speed or large residual errors, it is very simple 
to implement and well behaved compared to the 
faster recursive algorithms. This section discusses 

the extension of the LMS algorithm to the nonlinear 
case using the previously defined input vectors. The 
discrete time impulse response of a first order, 
linear, system with memory span M, is written in 
vector form as in Eq.(11) and the input vector as in 
Eq.(12). 

 

[ ] [ ] [ ]
��
�

��
� −= 110

)1()1()1()1(
MhhhH kkk

T

k �           (11) 

 

[ ]11

)1(

+−−= Mkkk

T

k xxxX �                             (12) 
 
In Eq.(11) the filter order is written as a superscript 
index. This notation will be kept consistent for the 
rest of the paper. 
Using Eq.(11) and Eq.(12), the output of a linear 
system is written as: 
 

)1()1(

k

T

kk XHy ⋅=                                                        (13) 
 
At sample k, the desired output is 

kd  and the linear 
adaptive filter output is ky . For the LMS algorithm, 
we minimize the Eq.(14). 
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The vector 
*

H  that minimizes the Eq.(14) may be 
expressed as a solution of the normal equation given 
in (15).  
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where: 1

xxR −  is the inverse of the input correlation 

matrix, [ ]T)1(
k

)1(
kxx XXER = , containing the 

moments of the input signal up to 2nd order and 
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The well known LMS update equation for a first 
order, linear, filter is: 
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where µ is a small positive constant (referred to as 
the step size) that determines the speed of 
convergence and also affects the final error of the 
filter output. 

The extension of the LMS algorithm to higher 
order, nonlinear, Volterra filters involves a few 
simple changes. First, the vector of the impulse 
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response coefficients becomes the vector of Volterra 
kernels coefficients. Second, the input vector, which 
for the linear case contains only a linear 
combination, for nonlinear Volterra filters, 
complicates. 

Consider the Volterra representation with 
symmetric kernels. There are two parts of this 
representation: (1) the Volterra kernel estimations 
and (2) the products of the delayed input signal. If 
we express the Volterra kernels and the input signal 
products in a vector form, then we can write the 
adaptive Volterra filter output using the vector 
notation. Each Volterra kernel (estimated at sample 
k) can be written in vector form.  

For simplicity we have implemented the 
nonlinear adaptive filter considering only first order 
and 3rd order Volterra kernels. 

The Eq.(17) gives “the input matrix” at sample k, 
containing the first and “the third order” input 
vectors defined previously. 
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The size of the input matrix is determined by the 

size of the third order input vector 
)3(

kX . “The filter 
coefficients matrix” at sample k is given by:  
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where 
T

kH
)1(

is given by the Eq.(12) and 
T

kH
)3(

is the 
third order kernel expressed in vector form as 
indicated in Eq.(19). 
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The update equation for the LMS Volterra filter can 
be written also in matrix form: 
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In the nonlinear case it is possible to set different 
step sizes for different order kernels. Consequently 
we have introduced the step size matrix M, defined 
by: 
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4 Experiments and results 
The adaptive method already presented was 
implemented in a system identification application, 
using the MATLAB software. The identified system 
was a 3rd order system with memory represented in 
Fig.2. 
 
 

  
LS 

 
( )3 

x [n] y[n] 

 
 

Fig.2 The nonlinear system  

where LS is a linear system with impulse response: 

 

( )tttth σ−= )1231sin()2,251exp(
98.0

1256
)(1             (21) 

 
The discrete time impulse response of the linear 

system is: 
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where Te  denotes the sampling period. Also we have 
calculated the Volterra kernels associated with the 
nonlinear system. The results are given in Eq.(23). 
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The input signal was a 2000 samples Gaussian 

noise with zero mean. The filter memory used was 
40=M . Because the kernels involved in the 

nonlinear filter has the same parity we have chosen 
31 µ=µ  in Eq. (20). In order to minimize the error 

[ ]ne  of the adaptation algorithm, the value of 1µ  
used in simulations was smaller than that imposed 
by theoretical considerations [1].  

In Fig. 3 we have represented the evolution of 
the mean square error (MSE), [ ] [ ]( )[ ]2nyndE − , 
considering 140 adaptation steps. 
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Fig.3. MSE against no. of iterations 

The accuracy of the proposed algorithm was 
appreciate according to: 
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where [ ]3213 ,, kkkh  are given by Eq.(23) and 

[ ]3213 ,,ˆ kkkh  are experimentally determined using 
the LMS algorithm. The result is presented in Fig.4. 
 

 
Fig.4 Third order Volterra kernel convergence 

against no. of iterations 
We have repeated the by adding noise at the 
output signal y[n]. We have considered two 
cases:  

- additive noise having  1.0
2

=σ (Fig.5); 

- additive noise having 01.0
2

=σ (Fig.6). 
 

 
Fig.5 MSE against no. of iterations ( 1.0

2
=σ ) 

 

 
Fig 6. MSE against no. of iterations ( 01.0

2
=σ ) 

 
Fig.7 shows the third order Volterra kernel 
convergence corresponding to: 

-Adaptation with noise ( 2 0.1σ = ; doted line); 
-Adaptation with noise ( 2 0.01σ = ; continuous 
line); 
-Adaptation without noise (line-dot-line). 

 

 
Fig.7 Compared results regarding the convergence 

of the third order Volterra kernel 

It can be seen that the adaptive algorithm gives 
satisfactory convergence in all three situations.  
 
 
5 Conclusion 
This paper has presented a new implementation of 
the third order LMS Volterra filter. The new 
implementation is based on the extended input 
vector and on the extended filter coefficients vector. 
 We have defined the input vectors corresponding 
to different order kernels. We have proposed a new 
method to generate the third order kernel 
coefficients based on the first order input vector.  

The new adaptive method was implemented in a 
system identification application, and the estimated 
third order kernel was compared with the previously 
determined kernel. The results indicates that the 
adaptive algorithm yields to a satisfactory 
convergence as indicated in Fig.7.  
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The method is easy to implement and useful in 
practical applications, when the capabilities of the 
linear filters are unsatisfactory. In a nonlinear 
system identification problem the presence of the 
second order Volterra kernel in the structure of the 
nonlinear adaptive filter is mandatory. 

In order to guarantee the convergence of the 
LMS algorithm we have considered a more general 
form for the updating equation that offers the 
possibility to set different step sizes for different 
order kernels.  

The extension of the LMS algorithm 
implementation to higher order Volterra filters is 
also possible and involves a few simple changes 
regarding the definition of the input vector and the 
definition of the filter coefficients vector. 
 
References: 
[1] J.Tsimbinos, Identification And Compensation 

Of Nonlinear Distortion, Thesis, Institute for 
Telecommunications Research, University of 
South Australia, 1995. 

        http://www.unisa.edu.au/html, 237 pages. 
[2] A.Stenger, W.Kellermann, RLS-Adapted  

Polynomial Filter for Nonlinear Acoustic Echo 
Cancelling, Proceedings of the X EUSIPCO 
2000, Tampere, Finland, pp. 1867-1870. 

[3] A.Stenger, W. Kellermann, Adaptation of a 
Memoryless Preprocesor for Nonlinear 
Acoustic Echo Cancelling, Signal Processing , 
No. 9, 2000, pp. 1747-1760. 

[4] F.Küch, W. Kellermann, Nonlinear Echo 
Cancellation using a Second Order Volterra 
Filter, ICCASSP 2002, {kuech,wk}@LNT.de. 

[5] G. Budura, I. Naforni�a, Kernels Measurement 
Techniques for Constructing Nonlinear Models, 
Scientific Bulletin of the „Politehnica" 
University of Timi�oara, Romania, Vol.I, 
2002,Timi�oara, pp. 190-195. 

[6] M. Schetzen, The Volterra and Wiener 
Theories of Nonlinear Systems, John Wiley and 
Sons, New York, 1980. 

[7] G. Budura, C.Botoca, La construction d'un 
modèle non linéaire a l'aide de séries Volterra et 
Wiener, Revue Roumaine des Sciences 
Techniques, Serie Electrotechnique et 
Energetique, accepted to be published in no.4, 
2005.  

2005 WSEAS Int. Conf. on DYNAMICAL SYSTEMS and CONTROL, Venice, Italy, November 2-4, 2005 (pp148-153)


