
Temperature Logger for Testing and Tuning
Control Algorithms

DORIN PETREUS, ZOLTAN JUHOS, ALIN CRISTEA
Electronics and Telecommunications Faculty, Applied Electronics Department

Technical University of Cluj-Napoca
26-28, George Baritiu Street, 400027, Cluj-Napoca

ROMANIA
http://www.ael.utcluj.ro

Abstract: - In this paper we propose the implementation of a temperature logger that will measure the ambient
temperature according to a certain algorithm and will store the measurement results along with the timestamp
of the measurement in a non-volatile memory for later retrieval and analysis. The non-volatile memory is a
32Kbytes EEPROM, and each stored sample is 8 bytes long, resulting in a maximum capacity of 4096
samples. The EEPROM is addressed as an endless circular buffer, so that if the maximum capacity is
exceeded, the logger will overwrite the oldest samples from the memory with the latest ones.

Key-Words: Logger, Log-interval, Temperature Sample

1 Introduction
When tuning temperature control algorithms the
first problem that arises is the monitoring of the
response with the current settings.

As a visual inspection isn’t suitable in most of
the cases, a logger has to be used that will read a
temperature sensor according to a certain algorithm
and store the results of the reading in a non-volatile
memory.

There are several techniques used for logging:
- rate monotonic logging, the samples are taken

at regular intervals from the moment the logger is
started until it is stopped;

- bounded, rate monotonic logging, the samples
are taken at regular intervals until the result reaches
a boundary of a predefined range;

- value sensitive logging, the samples are taken
only when there is a significant shifting in the
result.

2 Design of the logger
The design of the logger is split up in three major
parts: the hardware, the firmware and the PC
application.

2.1 The hardware
The logger is based on a C508 microcontroller from
Infineon. The microcontroller’s instruction set is
8051 compatible, but its architecture is enhanced,
executing a machine cycle in 3 oscillator periods
instead of 12 like in the case of the classical 8051
core.

For temperature sensing we used the LM75
sensor that can measure the temperature with a
precision of 0.5°C and connects to the
microcontroller by the means of an I2C bus. I2C is a
synchronous serial bus that features two signals: the
serial clock (SCL) and the serial data (SDA). All the
devices connected to this bus will have an open
collector or an open drain topology, and unique
address. From the 7 bit I2C address, in the case of
LM75 the least significant 3 bits are available for
external configuration. These pins are connected to
the supply voltage, resulting in the address
1001111b. The choice of the temperature sensor
was driven by the fact that it is replaceable without
the need of recalibration.

 To minimize the hardware requirements, the
real-time clock and the EEPROM memory used for
storage are also I2C interfaced. The real-time clock
(PCF8583) and non-volatile memory (24LC256)
used to store the log data are also I2C interfaced,
minimizing this way the number of I/O lines taken
up from the microcontroller.

The real-time clock’s functioning is based on a
32768Hz crystal. From the I2C address, the least
significant bit is accessible via a pin. We will set the
I2C address to 101000b. The PCF8583 has an
amount of 256 bytes of memory, from these the first
16 are used to keep the time, date and alarm
settings, and the rest of 240 bytes are available as
general purpose RAM. Due to the fact the real time
clock can function and retain data at voltages as low
as 1.0V, we used a 3.6V/60mAh accumulator to
keep the clock functioning when the power supply
is disconnected. This way we can take on the

2005 WSEAS Int. Conf. on DYNAMICAL SYSTEMS and CONTROL, Venice, Italy, November 2-4, 2005 (pp154-157)

advantage of the 240 bytes of general purpose
RAM. These locations will be used for storing the
settings for the logger, instead of storing it in the
EEPROM.

µC
C508

LCD

LM75 PCF
8583

24LC
256

I2C Bus

Keyboard

RS
232

Fig.1 – Block diagram of the temperature logger

The logger’s user interface consists of a 4 key-
keyboard and a 2 row by 16 characters LCD
module. For remotely reading the logged data a
computer can be connected to the logger trough the
RS232 compatible serial port [1].

2.2 The firmware
The software that runs on the microcontroller is
written in C and highly modularized in a hardware-
independent manner – except for the low-level
routines that directly interact with the hardware – so
that they can be ported on other platforms with no
or minor modifications.

Main program

RS232
driver

LM75
driver

PCF8583
driver

24LC256
driver

LCD
driver

Hardware

I2C driver

Fig.2 – Software architecture of the logger

The logger has three functioning modes:
-rate monotonic;
-bounded, rate monotonic;
-value sensitive

In the rate monotonic mode the logger will
record samples at regular intervals. This mode is
proper when a global view of a process is required.

The logging interval can be set by the user to a
predefined set of values, starting from 5 seconds up
to one hour. After the passing of a log period the
logger reads the current temperature and the current
time and stores them in the EEPROM.

When the bounded, rate monotonic logging
mode is used, beside the logging interval a

temperature limit has to be established. After it is
started, the logger will record the samples as
described in the previous mode and once it reached
the temperature limit, it will stop the recording.
When this mode is selected, the logging interval can
be decreased down to 0.5 seconds.

Bounded, Rate Monotonic

12
:09:0

6

Time

Te
m

pe
ra

tu
re

Logging interval = 1 second
Temperature limit = 30°C

12
:09:0

8

12
:09

:10

12
:09

:12

12:0
9:1

4

12
:09

:16

12
:09

:18

12
:09

:20

12
:09:2

2

12
:09

:24

12
:09

:26

12
:09

:28

12
:09

:30

12
:09

:32

12
:09

:34
20
22
24
26
28
30
32
34

Logging stops here

Fig. 3 – Bounded, rate monotonic logging

This mode is especially useful to evaluate the
dynamical behavior of a process.

In the value sensitive logging mode, the user
will set a temperature limit, so that a temperature
variation below it is accepted, resulting a hysteretic
behavior. Any variation exceeding the imposed limit
will be logged. This way the sample rate will
depend only on the variation of the temperature and
will be time independent. The first temperature used
as reference for the variations will be the one from
the moment of starting. In the moment when the
sample is recorded, the reference temperature will
be replaced by the temperature value from the
sample.

Value Sensitive

20
22
24
26
28
30
32
34

12
:37

:12

12
:37

:14

12
:37

:16

12
:37

:18

12
:37

:20

12
:37

:22

12
:37

:24

12
:37

:26

12
:37

:28

12
:37

:30

12
:37

:32

12
:37

:34

12
:37

:36

12
:37

:38

12
:37

:40

Time

Te
m

pe
ra

tu
re

Initial temperature reference = 22.0°C

Hysteresis temperature = 2.5°C

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6

Fig. 4 – Value sensitive logging

This mode is useful when determining process
dead-times or monitoring very slowly variable
temperatures.

2005 WSEAS Int. Conf. on DYNAMICAL SYSTEMS and CONTROL, Venice, Italy, November 2-4, 2005 (pp154-157)

In each logging mode, the sample’s structure is
the same. It contains the temperature, the date and
time, as well as a status byte that will indicate the
active logging mode in the moment of recording the
sample and weather the current sample is used,
unused or deleted. If the current sample is used, it
will be displayed when inspecting the log on the
local display and it will be downloaded over the
serial port. When the sample is marked unused, it
will be displayed on the local display, but it won’t
be downloaded to the PC. If the sample is marked as
deleted, the sample won’t be displayed at all, thus
its value isn’t erased from the memory to save the
memory endurance.

Temperature
High

Temperature
Low

Year Month Day
Hour Minute

Second Status
Table 1 – The structure of a log record

The temperature can be measured in the range
-20°C ÷ +125°C, so it has to be stored on two bytes.
The date information is stored on two bytes, the
hour on three bytes and there is one status byte, that
shows that the sample is in use or it is deleted. The
rest of the bits from the status byte are reserved for
log type to indicate the logging method used to
acquire the sample and markers. Each log record has
a length of 8 bytes. Having a 32Kbytes EEPROM,
that means that we can store up to 4096 samples. If
the rate monotonic logging is used with a log period
of 5 seconds means that the evolution of the
temperature can be recorded for almost 6 hours
without loosing a sample.

The log records can be viewed locally on the
LCD or can be downloaded to a PC.

The non-volatile EEPROM memory is
addressed as an endless circular buffer, so that if the
maximum capacity is exceeded the logger
overwrites the oldest samples from the memory with
the latest ones [2].

Sample1

S
am

ple
2

Sam
ple

3

Sample
4

Sample 5

Sa
m

ple 6

Sa
m

pl
e

7

Sample
8

Start address of
the buffer

Fig.5 – The classical circular buffer architecture

Usually, a circular buffer (figure 5) is used as a
FIFO buffer and has two indexes that indicate where
to store the latest data element (usually addressed as
“put index”) and from where to retrieve the oldest
stored data (addressed as “get index”). The length of
a circular buffer is preferred to be a power two, so
the wrap-around that is made at the end of the
physical memory section can be done by simply
truncating the upper bits of the address.

Sample9

S
am

ple
1 1

Sam
ple

12

Sample
13

Sample 5

Sa
m

ple 6

Sa
m

pl
e

7

Sample
8

Start address of
the buffer

Fig.6 – The endless circular buffer architecture

In the case of our buffer the samples are stored
in order and the retrieval can be done in a random
fashion. In case of the FIFO circular buffer, the
storage of new elements is stopped when the “put
index” reaches the value of the “get index”,
indicating that the buffer is full.

As it can be seen in figure 6, we implemented
an “endless” circular buffer. In this case when the
buffer reaches its capacity, the oldest sample is
overwritten when a new sample arrives.

When the logger is disconnected from the
power supply, a track of the last record has to be
kept to prevent the overwriting of the previously
recorded samples. To do this, after each record we
save the address where it was saved. We had two
choices for the storage of the address: the EEPROM
or the battery backed-up RAM memory from the
real time clock circuit. Considering the fact that the
locations containing the address of the last record
are rewritten very often, storing it in the EEPROM
would result in a premature destroying of the
memory locations, taking into account the 100,000
erase/write cycles. This isn’t a problem when RAM
memory is used, so we used the RAM from the real
time clock circuit.

The user interface permits the user to set the
local time and date, to set the log interval, view the
log records or delete the records one by one or all at
once. To simplify the user’s interaction with the

2005 WSEAS Int. Conf. on DYNAMICAL SYSTEMS and CONTROL, Venice, Italy, November 2-4, 2005 (pp154-157)

logger, all the functionality of the user interface is
also available through commands issued on the
serial port. This way the PC application can do the
same settings in an easier and more elegant way.

2.3 The PC application
The PC application that communicates with the user
is implemented in C programming language, using
National Instrument’s LabWindows.

Fig.7 – The PC application’s user interface

The PC application’s user interface exhibits
two types of representations of the recorded data, a
spreadsheet representation and a chart
representation. The spreadsheet representation
allows the user to inspect the log records on a
sample-by-sample basis, while the chart
representation gives a complete image of the
temperature’s evolution over the entire log interval.
This way the user gets a complete image of the
monitored system’s behavior.

The application can save the downloaded data
in a CSV (Comma Separated Values) file that can
be read by most of the common spreadsheet
applications or it can load previously saved files.

3 Conclusion
The temperature logger proposed in this paper helps
analyzing the efficiency of certain temperature
control algorithms in order to fine-tune them
specifically for the controlled area. It gives a full
image of the process under observation from the
moment of start-up, until it is stopped.

The different logging modes can be used to
monitor a certain part of the observed process.

Fig.8 – The temperature logger

References:
[1] Cupcea Nicolae, Stefanescu Costin, Sisteme

inteligente de masura si control, Editura
Albastra, 2002

[2] Petreus Dorin, Muntean Gabriel, Juhos Zoltan,
Palaghita Niculaie, Aplicatii cu microcontrolere
din familia 8051, Mediamira, 2005

2005 WSEAS Int. Conf. on DYNAMICAL SYSTEMS and CONTROL, Venice, Italy, November 2-4, 2005 (pp154-157)

