
Ethernet Enabled Embedded Controller for Distributed
Measurement and Control Applications

DORIN PETREUS, ZOLTAN JUHOS, ADRIAN GULES

Electronics and Telecommunications Faculty, Applied Electronics Department
Technical University of Cluj-Napoca

26-28, George Baritiu Street, 400027, Cluj-Napoca
ROMANIA

 http://www.ael.utcluj.ro

Abstract: - Embedded systems are becoming more complex and are processing more data than ever before.
Consequently they require faster means of communication to other systems, compared with traditional
methods such as RS232 or RS485. One solution is TCP/IP over Ethernet, allowing communications at 10 –
100Mbps, and communication between systems spread over a large area. The “large area” is usually limited to
a “local area” due to the addressing issues of the currently used IPv4 protocol. This paper proposes the
implementation of an Ethernet/IPV6 enabled system that can read an array of sensors and can control an array
of actuators.

Key-Words- Ethernet, IPv6, sensors, actuators

1 Introduction
In large systems, where lots of equipment has to be
interconnected in an ever-changing manner a
solution has to be found that can handle the
communication speed, assure the data safety and
support rapid reconfiguration of the connected
equipment’s topology. All these conditions are
intrinsically present in a twisted pair based Ethernet
network, with a TCP/IP stack on top. Even if this
kind of communication is considered to be too
heavy for a microcontroller based system, it still can
be implemented successfully in a 16-bit
environment, maybe with a few compromises at the
higher level protocols. Having such a secure and fast
way of communication, the user application can
reach new dimensions. This way secure and reliable
measurement and controlling applications can be
developed that use the already existent network
architectures to communicate with distant systems.
Usually these kinds of devices are situated in local
area networks, being connected to the exterior by a
server. The communication between two devices
situated in different local area networks is nearly
impossible because the devices aren’t using real IP
addresses. This issue can be avoided by
implementing an IPv6 based protocol stack.
Compared to the 32 bit address space of the IPv4
protocol, the IPv6 uses 128 bits to represent the IP
address, resolving once and for all the problem of
real IP addresses.

2 Design of the Ethernet enabled
controller
The proposed application uses a 16-bit C163
microcontroller from Infineon connected to an
already existent network component that is a Realtek
RTL8019 based network card, featuring an ISA bus
interface.

The C163 microcontroller can use up to 5
memory zones, each of these activated by a chip
select signal. Since the address space is linear, this is
necessary to discriminate the program memory
banks, the data memory banks and the I/O space.
While the first four zones are proper for program
memory or external data memory, the last zone can
be used for accessing I/O mapped devices. With the
exception of the first select signal, that is active
when all the other select signals are inactive for each
of these zones, a start address and a length can be
defined. Due to the fact that the memories or
peripherals selected with these signals can have
different speeds, we have the possibility to introduce
wait states during the bus access. Taking advantage
of this fact and the classical external bus of the
C163, the ISA card can be mapped in the I/O
address space without the need of glue-logic.

The addressing of the RTL8019 is done in an 8
bit manner. From the ISA interface we used the
address signals SA0 through SA10, SD0 through
SD7, IOR, IOW and the RESET. The RESET signal

2005 WSEAS Int. Conf. on DYNAMICAL SYSTEMS and CONTROL, Venice, Italy, November 2-4, 2005 (pp158-161)

must be asserted before the communication with the
RTL8019 is started. To ease the decoding of the
address, the most significant address line of the
RTL8019 is replaced with the chip select of the
microcontroller that is used to address I/O mapped
devices.

RTL8091AS C163 MOTOR
DRIVER

RS
232

Fig.1 – The system’s architecture

Usually, the network card’s base address is

300h, but due to the fact that the microcontroller
uses 16 bit memory accesses, the least significant bit
isn’t used, so the whole address space will be shifted
to the left with one bit, resulting in an apparent base
address of 600h. The further addressing is done
ignoring the least significant address bit, to access
the physical address 301h, the address 602h must be
present on the address bus. The most significant
address line will be replaced by the Chip Select
signal. To this address we have to add the offset of
the page declared to be addressed by using the CS4
signal that is 100000h.

The network controller is compatible with
National Semiconductor’s DP8390, as an extra, it
has a set of registers for Plug and Play configuration
over the ISA bus. It includes the physical layer
controller and the data link layer from the OSI
model. This way the data received can be presented
to the network layer that is part of the TCP/IP
protocol stack.

The serial port present on the application is
used for debugging purposes in case that the local
network is disconnected, it allows full access to the
transducer parameters present in the system and
memory dump commands can be issued for
analyzing the state of the network protocol stack.

The present application controls a stepper
motor and reads a temperature sensor. The motor
driver has to be implemented and connected to the
hardware. The driver is connected to a general
purpose port, allowing rapid switching of the phases
and eliminating the need for extra hardware to
decode a certain address for this purpose. The
temperature sensor is DS18S20 from Maxim Inc.
This reads the temperature with a precision of up to
0.06°C. The temperature reading is done through a
one wire interface that is connected to a general
purpose port of the microcontroller.

From software point of view, we implemented
the network interface as general as possible, so it
can be used in other designs as well. The network
interface is broken up into several modules,
corresponding to the OSI layers. Having in mind the
sharing of the resources with the other modules that
will run on the microcontroller, the memory buffer
for the packets arriving from the network interface
card (NIC) will store only one frame. Upper layers
will decode the frame from the buffer up to their
representation and will return structures that point to
the corresponding location in the memory buffer.
Although this has the disadvantage that the packet
and segment size will be limited to approximately
1400 bytes and that fragmented packets are not
supported, being in an embedded environment and
expecting communication with other embedded
devices, this is not a problem.

The first module from the network interface is
the RTL module. This implements the low level
communication with the NIC, acting as a driver,
taking the place of the data link layer of the OSI
model. Above this module is the ETH module that
will decode the frame into its structure. The IP6 [1]
module uses the services of the ETH and will
decode the packet by returning relevant integers or
pointers. This module will also do host-to-network
or network-to-host byte order conversions, due to
the different endianness of the microcontroller and
the Ethernet protocols. The ICMP6 [2] is a helper
protocol for diagnostic, discovery, error and
configuration purposes. Although it is encapsulated
in an IPv6 packet, it is not considered to be a layer 4
protocol. This module will implement ICMP6
functions like auto-configuration, neighbor
discovery, echo reply, etc. UDP [3] is one of the
modules the application that uses the network will
see. It uses the services of IP6 in order to receive
and send UDP packets from/to the network. TCP [4]
module is at the same level as the UDP, using the
services of IP6. It is a minimal implementation of
the TCP, still under development. It is used by the
web server, as well as by other modules of the
application that will require a TCP connection to a
distant device.

The other major part of the microcontroller’s
software is the transducer interface. This is also
intended to be a framework for transducer based
applications. To be noted that transducer will
include sensors as well as actuators. The framework
supposes that each transducer will have an electronic
descriptor that will describe the type and
possibilities of it. Each type of transducer has a
unique descriptor and a specific function list. The
system that requires access to a certain transducer

2005 WSEAS Int. Conf. on DYNAMICAL SYSTEMS and CONTROL, Venice, Italy, November 2-4, 2005 (pp158-161)

will first inquire the list of locally connected
transducers. The connection can be done to the
distant system only in certain conditions. If the
transducer is an actuator, it must not be involved in a
connection with another distant or local device. If
the transducer is a sensor, we’ll have two situations:
the sensor delivers volatile data, in this case the
same rules are applied as in the case of the actuators,
or the sensor delivers non-volatile data, so that
multiple connections can be made to it.

Getting or setting a certain transducer’s values
is possible only after the connection is made,
according to the rules above. This is done by the
means of a set of functions that will include the
identifier of the connection, the parameter of interest
and a pointer to the value of the parameter.

Fig. 2 – Flowchart of the application

The third major part of the application is a web

server that is placed on the top of the network
interface. Although the transducers can be achieved
by the means of a UDP or TCP connection, the web
server allows visual connection with a distant user

that wants to inquire the sensors’ status or control
the actuators.

The rest of the application intermediates the
network interface and the transducer interface,
allowing access to the resources through UDP or
TCP ports.

The whole application being broken up into
tasks, we needed an environment to handle all the
tasks in a transparent manner. Considering that a
RTOS would be too complex to do the job, taking
up too many of the resources, we wrote a non-
preemptive scheduler, named NPTASK, based on
the idea of protothreads [5]. This scheduler exports
only two functions, nptask_create for creating a task
and nptask_yield for ceasing the system resources to
another task. The module will execute the functions
in order, so each task can do its job in a sequential
manner.

The transducers that we connected for testing
were a stepper motor, as an actuator and a digital
temperature sensor. For the motor we can set the
following parameters:

- type of stepping: full step, half step
- direction: clockwise, counterclockwise
- speed: specified in milliseconds between

each step (max. 100)
- number of steps: 0 up to 65535
For the temperature sensor we can set the

calibration parameters and we can read the
temperature.

The transducers can be reached by the means
of the UDP protocol ports 2001 and 2002.

Fig. 3 – Echo reply from the device

The device was tested in the local network of

the Technical University of Cluj-Napoca. The
minimum response time that we obtained is around
3ms, with an average of 4.5-5ms.

2005 WSEAS Int. Conf. on DYNAMICAL SYSTEMS and CONTROL, Venice, Italy, November 2-4, 2005 (pp158-161)

Fig. 4 – The Ethernet enabled controller

3 Conclusion
The proposed system can be used to efficiently
monitor a large area of sensors or to control an area
of actuators. Due to its architecture a common
communication interface is achieved for
communicating with other systems or a user. While
from the machine’s point of view it is just another
communication protocol, from the user’s point of
view it’s a great benefit, since any endpoint can be
configured by the means of a web browser.

References:
[1] http://www.ietf.org/rfc/rfc1883.txt
[2] http://www.ietf.org/rfc/rfc1885.txt
[3] http://www.ietf.org/rfc/rfc768.txt
[4] http://www.ietf.org/rfc/rfc793.txt
[5]http://www.sics.se/~adam/pt/pt-1.1-

refman/main.html

2005 WSEAS Int. Conf. on DYNAMICAL SYSTEMS and CONTROL, Venice, Italy, November 2-4, 2005 (pp158-161)

