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Abstract: Dispersal of the species in the biological context is an important phenomenon to study. The 
basics of the theory of random dispersion of Biological Population took shape after the pioneering 
work of Skellam[7].His method involved applying the analytical expression for molecular diffusion 
directly To ecological problems, relating it to the interaction among and between species. In this 
work we shall be studying the one dimensional diffusion equation with constant coefficient of 
diffusivity as well as, time varying diffusivity. The main objective is to estimate the coefficient of 
dispersion in both the cases. For this a Statistical Estimation is being performed for the above 
coefficient in both cases by considering the growth of Yeast made by Carlson. 
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1. Introduction 
Dispersal of the species in the biological 
context is an important phenomenon to 
study. The basics of the theory of random 
dispersion of Biological Population took 
shape after the pioneering work of 
Skellam[7].His method involved applying 
the analytical expression for molecular 
diffusion directly To ecological problems, 
relating it to the interaction among and 
between species. Accounting for 
differences in scale among ecological 
entities and processes Has been suggested 
as a way to understand the hierarchical 
complexity of Natural systems(O’Neill et 
al;[4]O’Neill[5],Salthe[6].Yet for all of its 
promise; examples of Mathematical or 
Stochastic development of the 
hierarchical approach are few 
Steele[8].Recently Timm and 
Okubo[9]observed (by considering an 
ecological model of Levin and Segal[] for 
prey-predator Planktonic species)that 
diffusive instability is less likely to occur 
in system with time varying 
diffusivity,than those of constant 
diffusivity. Their model Parameter 
estimates are based on the data in 
Wroblewski and O’brien[10]. In the 
present paper we shall be studying the 
one dimensional diffusion equation with 
constant coefficient of diffusivity as well 
as, time varying diffusivity. The main 
objective is to estimate the coefficient of 
dispersion in both the cases. For this a 
Statistical Estimation is being performed 
for the above coefficient in both cases by 
considering the growth of Yeast made 
by Carlson[1,2]. 
 
2. Problem Formulation 
The one dimensional diffusion equation 
is, 
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Where D is the coefficient of diffusivity. 
The above equation is being  Extensively 
used in Biology and other related areas. 
Diffusion is the spreading Of particles 
ranging from molecules to bacteria, 
whose individual trajectories are 

regarded as random. An example to this 
situation is the dispersion of dye Particles 
that are released into a clear fluid from a 
needle. We are interested in the 
Statistical Estimation of the coefficient D 
in (1) called the coefficient of diffusivity. 
 
3.Problem Solution 
By a standard technique of separation of 
variables (1) is being solved to obtain, 
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Where n =1,2,3,…. 
We shall refer this D as pure. If D is 
assumed to depend upon the time t 
Then the solution of (1) is given by 
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In the present work we shall study the 
case when tbatD sin)( +=  ,where a and 
b are constants which are to be estimated. 
Substituting the value of D in equation 
(2) we obtain, 
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 Taking logarithm of the equation (4) we 

get, 
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 Case 1 
  
 The equation (2) can be written as, 
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 Upon considering 
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tAAtu 21log)(log ′−′= ,which upon 

further simplification results into; 
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Case 2 

  
Proceeding in the similar manner 
equation (6) can also be written as 
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We now estimate the constants in both 

  the cases using the Method of Least 
Square 

  
 Suppose there are n-paired observation t 

and u(t).Then the normal equation in the 
first case are 
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 Similarly we can obtain the normal 
equations for Case 2, which are as follows 
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 We have tried to obtain the Regression 

Model for the above two cases for the 
following set of data from Carlson[1,2] on 
the population of Yeast growth in 
Laboratory cultures 
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Table 1 

Growth of Yeast Population 
 

Hours (t) Am.of Yeast (u(t)) 
0 9.6 
1 18.3 
2 29.0 
3 47.2 
4 71.1 
5 119.1 
6 174.6 
7 257.3 
8 350.7 
9 441.0 
10 513.3 
11 559.7 
12 594.8 
13 629.4 
14 640.8 
15 651.1 
16 655.9 
17 659.6 
18 661.8 
  
Using the above data  the regression models are 

)2238915.0exp(46663.28)( ttu = (10) 
for Case 1,and 

 
)cos079207.02227680.0exp(77304.28)( tttu −= (11). 

 
These are estimated and shown for the above set 
of data in the following table. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2 
Growth of Yeast population with its 

estimated value 
 

Hours(t) Amount 
of Yeast 

Estimate for 

 observed Case1 
(Constant 
D) 

Case2 
D as a 
function
of time 

0 9.6 28.47 26.58 
1 18.3 35.61 34.45 
2 29 44.55 46.43 
3 47.2 55.72 60.71 
4 71.1 69.71 73.87 
5 119.1 87.2 85.7 
6 174.6 109.08 101.49 
7 257.3 136.45 128.91 
8 350.7 170.69 172.97 
9 441 213.53 229.64 
10 513.3 267.11 285.31 
11 559.7 334.13 333.46 
12 594.8 417.98 389.87 
13 629.4 522.86 484.71 
14 640.8 654.07 643.78 
15 651.1 818.2 863.62 
16 655.9 1023.51 1096.17 
17 659.6 1280.35 1297.62 
18 661.8 1601.63 1505.62 
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The attached Figure 1 shows the three 
cases. 

  
Figure 1 

 
 
  

Conclusion 
 The main motivation of this study is to estimate 

the coefficient of diffusion in both the cases 
Statistically. However  Timm and Okubo[9] have 
estimated these Mathematically. We feel that 

 our approach is  rather novel,  easily 
comprehensible and 

 might be helpful to Experimental Biologists. 
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