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Abstract: In this paper we tackle the diagnosis problem in nonlinear systems under failure using algebraic observ-
ability and differential transcendence degree concepts. The proposed methodology is applied to a hydraulic system.
Numerical simulations are presented to illustrate the effectiveness of the suggested approach.
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1 Introduction
Systems diagnosis has been studied for more than three
decades, see for instance [1]. Early research was strongly
oriented towards the design of algorithms which are ca-
pable of realizing the fault diagnostic task in linear sys-
tems. In [1] a review of the observer-based fault diagno-
sis approaches for deterministic nonlinear dynamic sys-
tems is given, also, some schemes extending the well-
known diagnosis methods for linear systems to the non-
linear case. Besides a direct extension of the unknown
input observer (UIO) results in linear systems to the
nonlinear case was considered. Another appealing ap-
proach is the one based on differential geometric meth-
ods [2, 7]. Alternatively, some authors have proposed
solutions to the Fault Detection and Identi�cation Prob-
lem for a nonlinear systems class in an algebraic and
differential setting [3, 4]. For instance, in [3] and [4]
an approach has been considered to solve the diagno-
sis problem. It consists on translating the solvability
of the problem in terms of the algebraic observability
of the variable modelling the fault. The connection be-
tween diagnosability and observability of faults has not
been studied previously. However, it is important to
note mentions of quite close notions in earlier works [6]
including input observability, fault detectability, distin-
guishability and fault isolability [1]. The framework in
which this paper is conceived is essentially based in the
language of differential algebra. In [3, 4], the method-
ologies employed for the observer design only include
full order observers without considering uncertainty es-
timation.
In this paper, the fault dynamics is considered as an un-
certainty. In the proposed procedure, the construction of
a full order observer is not necessary, instead of this, a
reduced order uncertainty observer is constructed using
differential algebraic techniques applied to the fault es-
timation in the diagnosis problem.
The proposed methodology is applied to a hydraulic sys-
tem, which was studied before in [7]. Here, a full es-

timation of the fault is obtained, meanwhile in [7] the
work is limited to fault detection. The class of systems
for which this methodology can be applied contains sys-
tems depending on the inputs and their time derivatives
in a polynomial form.
The rest of this paper is organized as follows: In Section
2 some basic de�nitions on observability and systems
diagnosability in a differential algebraic framework are
introduced. The statement of the problem and the diag-
nosability condition are described in Section 3. In Sec-
tion 4 the application of the proposed methodology to
a hydraulic system is shown. In Section 5, the con-
struction of a reduced order uncertainty observer is de-
scribed. In section 6, numerical results are given. Fi-
nally, in Section 7 the paper is closed with some con-
cluding remarks.

2 Basic De�nitions
We start introducing, some basic differential algebra de-
�nitions given in [3, 4, 5], and references there in.

De�nition 1 A differential �eld extension L/k is given
by two differential �elds k and L, such that: i) k is a sub-
�eld of L, ii) the derivation of k is the restriction to k of
the derivation of L.
Example Q,R and C are trivials differential �eld exten-
sions, where Q � R � C.

De�nition 2 An element is said to be differentially al-
gebraic with respect to the �eld k if it satis�es a differ-
ential algebraic equation with coef�cients over k:
Example Let R



eat
�
=R a differential �eld extension,

where R � R


eat
�
; x=eat is a solution of P(x)=�x-ax=0

(a is a constant).

De�nition 3 An element is said to be differentially tran-
scendental over k, if and only if, it is not differentially
algebraic over k.
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De�nition 4 Let L=k a differential �eld extension. A
differential transcendental family, which is the greatest
with respect to the inclusion, is called a differentially
transcendental base of L=k. The cardinality of the base
is called the differential transcendence degree of L/k:

difftrd�(L=k); (1)
for more details see [5].

De�nition 5 The differential output rank � of a system
is equal to the differential transcendence degree of the
differential extension k hyi over the differential �eld k,
i.e.:

� = difftrd�k hyi =k: (2)
Property 1. The differential output rank �; of a system
is smaller or equal to min(m; p):

� = difftrd�k hyi =k � min(m; p), (3)
where m; p are the total number of inputs and outputs
respectively.

De�nition 6 A system is left-invertible, if and only if,
the differential output rank is equal to the total number
of inputs, i. e.

� = m

Property 2 (Left invertibility). If a system is differen-
tially left-invertible then the input u can be recovered
from the output by means of a �nite number of ordinary
differential equations.

De�nition 7 A dynamics is a �nitely generated differ-
ential algebraic extension G/khui (khu; �i,� 2 G). Any
element of G satis�es an algebraic differential equation
with coef�cients being rational functions over k in the
elements of u and a �nite number of their time deriva-
tives.

Example Let consider the input-output system �y + !2

sen(y) = u, equivalent to the system:

�B

8<: _x1 = x2
_x2 = �!2sin(x1) + u
y = x1

(4)

system (4) is a dynamics of the form R hu; yi =R hui
where G = R hu; yi ; y 2 G and k = R: Any solu-
tion of (4) satis�es the following differential algebraic
equation:�

y(3) � _u
�2
+
�
_y
�
y(2) � u

��2
=
�
!2 _y

�2
:

De�nition 8 Let a subset fu; yg of G in a dynamics
G=khui. An element in G is said to be algebraically
observable with respect to fu; yg if it is algebraic over
k hu; yi : Therefore, a state x is said to be algebraically
observable, if and only if, it is algebraically observable

with respect to fu; yg:A dynamicsG=khui;with output
y in G is said to be algebraically observable if, and only
if, the state has this property.
Example System �B in (4) with output y 2 R hu; yi
is algebraically observable, since x1 and x2 satisfy two
differential algebraic polynomials with coef�cients in
R hu; yi, i.e.

x1 � y = 0

x2 � _y = 0:

3 On the diagnosability condition
Let consider the class of nonlinear systems described
by:

_x(t) = A(x; �u)
y(t) = h(x; u);

(5)

where x = (x1; :::; xn)
T 2 Rn is a state vector, �u =

(u; f) = (u1,...,um��, f 1,...,f �) 2 Rm�� � R� where
u is a known input vector and f is an unknown fault
vector, y = (y1; :::; yp) 2 Rp is the output. A and h are
assumed to be analytical vector functions.
In the next paragraphs some concepts concerning to the
diagnosability problem will be presented [3, 4].

De�nition 9 (Algebraic observability) An element f
2 k h�ui is said to be algebraically observable if f sat-
is�es a differential algebraic equation with coef�cients
over k hu; yi :

De�nition 10 (Diagnosability) The class of nonlinear
systems described by (5) is said to be diagnosable if it
is possible to estimate the fault f from the system equa-
tions and the time histories of the data u and y, i. e., it is
diagnosable if f is algebraically observable with respect
to u and y.
In other words it is required that each fault component
be able to be written as a solution of a polynomial equa-
tion in fi and �nitely many times derivatives of u and y
with coef�cients in k:

Hi(fi; u; _u; :::; y; _y; :::) = 0:

Example Let consider the following linear system
_x1 = x2
_x2 = �x2 + f
y1 = x2

(6)

It is not hard to see that system (6) is diagnosable ac-
cording to de�nition 8, that is to say, the fault f in the
system is algebraically observable with respect to u and
y and satis�es a differential algebraic polynomial with
coef�cients in k hu; yi as follows:

_y + y � f = 0
Rearranging terms the following differential algebraic
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polynomial is obtained
f = _y + y; (7)

then, f can be estimated from �y and y. Condition (7) is
called the diagnosability condition.
It was already pointed out in [4] that a diagnosable

system is not necessarily observable, and vice versa. In-
deed, the following system(

_x1 = �x1 + x2;
_x2 = x2 + u+ f;
y = x2;

(8)

is diagnosable, i. e. f = _y � y � u; but it is not observ-
able since x1 is not observable with respect to u and y.
�
The following result relates the observability and diag-
nosability conditions

Theorem 1 [4] If system (5) is observable then it is di-
agnosable iff f is observable with respect to u, y and
x. �

Remark 1 This is an immediate consequence of the
general transitivity property of the observability condi-
tion [4].

3.1 On the minimal number of measurements
The basic practical question is: How many measure-
ments does one need to make a system diagnosable?.
An answer to the question would be a valuable piece of
information to the system expert who wants to optimize
the number of sensors for fault detection purposes [4].
Before starting the main result, an useful Lemma con-
cerning the Towers of Differential Fields Extensions and
some de�nitions are given. This results will be used sub-
sequently in the proof of Theorem 2.
Lemma 1 [8] Take K, L, M , differential �elds, where
K � L �M; then:
difftrd�M=K = difftrd�M=L+difftrd�L=K: �

(9)
Another key result is given in the following proposition:

Proposition 1 The differential transcendence degree of
the differential �eld extension k h�u; yi =k h�ui is equal to
zero, that is to say

difftrd�k h�u; yi =k h�ui = 0: (10)

Proof From Property 1 of the differential output rank,
there exists only two cases: � = m and � < m:

By applying Lemma 1 to the differential �eld extension
k h�u; yi =k; the following decomposition is obtained:

k � k hyi � k h�u; yi
k � k h�ui � k h�u; yi

then
difftrd�k h�u; yi =k = difftrd�k h�u; yi =k hyi
+difftrd�k hyi =k

(11)
difftrd�k h�u; yi =k = difftrd�k h�u; yi =k h�ui
+difftrd�k h�ui =k:

(12)

Case 1 Let suppose that � = m; then by Property of left
invertibility

difftrd�k h�u; yi =k hyi = 0
Replacing in (11) this implies that:

difftrd�k h�u; yi =k = m (13)
From (12) and (13) it is not hard:
difftrd�k h�u; yi =k h�ui+ difftrd�k h�ui =k = m

(14)
and using the following relation which is given by de�-
nition:

difftrd�k h�ui =k = m;

then:
difftrd�k h�u; yi =k h�ui = 0: (15)

and the �rst part of the proof is concluded .
Case 2 Let consider � < m, then ye and yT can be
de�ned, such that the output vector ye is differentially
transcendental over the differential �eld k hyi and yT =
[y; ye], which means that:

k hyT i = k hy; yei ;
then k hy; yT i =k hyT i is a differential algebraic exten-
sion, that is to say:

difftrd�k hy; yT i =k hyT i = 0 (16)
without loss of generality, let suppose that

�T = m

or in other way
�T = �+ �e = m:

But in Case 1 was proved that if �T = m; then
difftrd�k hyT ; �ui =k h�ui = 0

and from (16) this implies that
difftrd�k hy; �ui =k h�ui = 0

and the proof is concluded. �

The following theorem corresponds to the main result of
this paper.

Theorem 2 System (5) is diagnosable iff difftrd�khu; yi=khui =
�; where � is the number of components of the fault f .

Proof By applying Lemma 1 to differential �eld exten-
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sion k h�u; yi =k; the following relation is obtained:
k � k hui � k hu; yi � k h�u; yi

then
difftrd�k h�u; yi =k = difftrd�k h�u; yi =k hu; yi
+difftrd�k hu; yi =k hui+ difftrd�k hui =k:

(17)
On the other hand

k � k hui � k h�ui � k h�u; yi

difftrd�k h�u; yi =k = difftrd�k h�u; yi =k h�ui
+difftrd�k h�ui =k hui+ difftrd�k hui =k:

(18)
From (17) and (18) the following is given

difftrd�k hu; yi =k hui = difftrd�k h�u; yi =k h�ui
+difftrd�k h�ui =k hui � difftrd�k h�u; yi =k hu; yi

(19)
Using Proposition 1 in (19)

difftrd�k hu; yi =k hui = difftrd�k h�ui =k hui
�difftrd�k h�u; yi =k hu; yi

(20)
From (20), is now possible to demonstrate Theorem 2.

(Suf�ciency)
Let suppose that the difftrd�k hu; yi =k hui is equal to
the number of fault components; since each fault com-
ponent is differentially transcendental over k hui, then,
difftrd�k h�ui =k hui is also equal to the number of fault
components which implies:

difftrd�k h�u; yi =k hu; yi = 0;
that is to say, the fault f is algebraic over k hu; yi (or f is
diagnosable), which concludes the �rst part of the proof.

(Necessity)
Let f to be diagnosable, this implies that f is algebraic
over k hu; yi and the following equality is true:
difftrd�k hu; yi =k hui = difftrd�k h�ui =k hui ;

(21)
Is also known that difftrd�k h�ui =k hui=�, since all the
fault components are by de�nition differentially tran-
scendental over the differential �eld k hui. Then, the
equality (21) can be expressed as follows

difftrd�k hu; yi =k hui = �;

where � is the number of components of the fault f .
And the proof is concluded: �
Remark 2 Theorem 2, provides a way to determine
the diagnosability of a class of nonlinear systems de-
scribed by (5). �

4 Hydraulic System
The hydraulic system was presented in [7], which con-

sists of a spool valve and a single rod piston acting on
an inertial load (see Figure 1). The external force Fe
controls the �ow entering the head side chamber of the
piston from a pressure supply Pa: The rod side chamber
is always connected to the return pressure Pr.
Then, it is necessary to detect and estimate two faults

in this system: a drop of the spool control force Fe; and
an increase of the internal leakage of the piston which is
normally assumed to be negligible.

Fig. 1. Hydraulic system

The following notations will be used: x1; displacement
of the spool; x2; velocity of the spool; x3; displacement
of the piston; x4; velocity of the piston; x5; pressure at
the head side chamber; f1; failure mode corresponding
to the control force; f2; failure mode corresponding to
the internal leakage of the piston; Ap; area of the pis-
ton; D; diameter of the spool; B; bulk modulus; Cd;
discharge coef�cient; �; density of the �uid;Ks and Rs;
respectively spring and damping coef�cients associated
to the spool; Kp and Rp respectively spring and damping
coef�cients associated to the load;Ms, andMp respec-
tively mass of the spool and mass of the piston together
with the load.
Now, the model of the process is presented
_x1 = x2
_x2 = �(Ksx1 +Rsx2)=Ms + (Fe � FF � f1)=Ms

_x3 = x4
_x4 = (�Kpx3 �Rpx4 +Apx5)=Mp

_x5 =
B

Apx3
Cd�Dx1

q
2
�(Pa � x5)�B

x4
x3
� x5x4

x3

� B
Ap

f2
x3

(22)
where FF = 2Cd�D

� x1(Pa�x5) represents the full �ow
force acting on the spool. The available measurements
are y = [ y1 y2 ]T = [ x1 x3 ]T :
All the state variables xi; i = 1; :::; 5 take values in
closed intervals [ai; bi], i = 1; :::; 5: The position mea-
surements are calibrated so that the lower bounds of the
interval are positive, and thus the division by x3 does
not cause any problem.
Firstly, it is necessary to construct an algebraic equa-
tion to each component of the fault with coef�cients in
k hu; yi.
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Obtaining a second time derivative of y1:
�y1 = � (Ksy1 +Rs _y1) =Ms + (Fe � FF � f1) =Ms

(23)
Where:

FF = 2Cd�D
� y1(Pa � x5);

x5 = (Mp�y2 +Kpy2 +Rp _y2) =Ap
(24)

and replacing (24) in (23), it is possible to obtain a dif-
ferential algebraic polynomial for f 1 whose coef�cients
are in k hu; yi

0 = ��y1 � (Ksy1 +Rs _y1) =Ms + (Fe � 2Cd�D
� y1

(Pa � ((Mp�y2 +Kpy2 +Rp _y2=Ap))� f1)=Ms

(25)
Also, replacing y1 and y2 in _x5, the following equation
is obtained:

_x5 =
B

Apy2
Cd�Dy1

r
2

�
(Pa � x5)�B

_y2
y2
�x5 _y2

y2
� B

Ap

f2
y2

(26)
where, replacing x5 = (Mp�y2 +Kpy2 +Rp _y2) =Ap;
yields:

0 = � (Mp
...
y 2 +Kp _y2 +Rp�y2) =Ap +

B
Apy2

Cd�Dy1�q
2
�(Pa � ((Mp�y2 +Kpy2 +Rp _y2) =Ap))

�
�B _y2

y2
� ((Mp�y2+Kpy2+Rp _y2)=Ap) _y2

y2
� B

Ap

f2
y2

(27)
Equations (25) and (27) are the differential algebraic
polynomials for f 1 and f 2 with coef�cients in k hu; yi.
However, these polynomials depends on second and third
derivatives of the output, which are unknown. So, it is
not possible to construct a reduced order observer for
the fault in a direct way. On the other hand, by The-
orem 1, it is known that if a system is observable (i. e.
the state x is algebraically observable) then it is diagnos-
able iff the fault f is observable with respect to u, y and
x. It is not hard to see that this system is algebraically
observable as follows:

x1 � y1 = 0;

x2 � _y1 = 0;

x3 � y2 = 0;

x4 � _y2 = 0;

Apx5 � (Mp�y2 +Rp _y2 +Kpy2) = 0:

So by Theorem 1, it is only necessary that each compo-
nent of the fault be algebraically observable with respect
to u, y and x, and it is not hard to see that this condition
is satis�ed.
Then, from (22) the following equations are obtained

f1 = �MS
:
x2 � (KSy1 +Rsx2) + Fe � FF

f2 = �
:
x5y2Ap=B + Cd�Dy1

q
2
�(Pa � x5)

�Apx4 � Ap

B x4x5

where it is clear that difftrd�R hu:yi =R hui = 2:

5 ReducedOrder Uncertainty Observer
Let consider system (5). The fault vector f is unknown
and it is assimilated as a state with uncertain dynam-
ics. Then, in order to estimate it the state vector is ex-
tended to deal with the unknown fault vector. The new
extended system is given by

_x(t) = A(x; �u) (28)
_f = 
(x; �u)

y(t) = h(x; u)

where 
 (x; �u) is assumed to be a bounded uncertain
function
Note that a classic Luenberger observer can not be con-
structed because the term 
 (x; �u) is unknown. The
above problem is overcome using a reduced order un-
certainty observer in order to estimate the failure vari-
able f.

Hypotheses
H1: 
 (x; �u) is bounded, i.e., j
 (x; �u)j �M:
H2: f(t) is algebraically observable over k hu; yi :
H3:  is a C1 real-valued function.
Where 
 (x; u) is a function which depends on the state
vector and possibly the input. Next Lemma describes
the construction of a proportional reduced-order observer
for (28).
Lemma 2 [9] The system

:

f̂ = K
�
f � f̂

�
(29)

is an asymptotic reduced order observer for system _f =


(x; �u), where f̂ denotes the estimate of fault f: Fault
f is given by its algebraic equation with coef�cients in
k hu; yi and K 2 R+ determines the desired conver-
gence rate of the observer. �

Corollary The dynamic system (29) along with

_ =  (x; �u; ); with 0 = (0) and  2 C1 (30)
constitute a proportional asymptotic reduced order fault
observer for the system (28), where  is a change of
variable which depends on the estimated fault f̂ ; and
the states variables. �
The performance of the reduced order observer estima-
tor is shown by means of numerical simulations.

6 Numerical Results
Before to construct the reduced-order observer used for
the fault estimation, the states x2; x4 and x5; must be
estimated, so it is proposed the following reduced-order
observer:
For x2 and x4 it follows that

x̂2 =
:
ŷ1 = K1 (y1 � ŷ1)

x̂4 =
:
ŷ2 = K2 (y2 � ŷ2)
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In order to estimate x5 the following system is con-
structed :

x̂5 = 5 +
K5Mp

Ap
x̂4; 5 2 C1

_5 = K5

�
(Kpx3 +Rpx̂4) =Ap � 5 �

K5Mp

Ap
x̂4

�
Then, it is now possible to construct the diagnosability
condition for each one of the fault components as fol-
lows. In the case of f1:

f1 = �MS

:
x̂2 � (KSy1 +Rsx̂2) + Fe � FF (31)

In order to eliminate the derivative _x2, the following
change of variable f1 is proposed.
From (31), it is easy to obtain the following system,
which is a reduced order observer for f1:

f̂1 = f1 �Kf1MS x̂2; f1 2 C1
_f1 = Kf1 [� (KSy1 +RS x̂2) + Fe � FF�
f1 +Kf1MS x̂2

�
In a similar manner, for f2
f2 = �

:
x̂5y2Ap=B + Cd�Dy1

q
2
�(Pa � x̂5)�Apx̂4 �

Ap

B x̂4x̂5

Then, the following system is a reduced order observer
for f2:

f̂2 = f2 �
Kf2

Ap

B y2x̂5; f2 2 C1

_f2 = Kf2

h
Cd�Dy1

q
2
�(Pa � x̂5)�Apx̂4

�f2 +
Kf2Ap

B y2x̂5

i
Numerical simulations corresponding to this example
are presented in �gure 2.

a)
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Fig 2. Hydraulic system. a) Fault f1 (solid line) and estimate f̂1

(dotted line). b) Fault f2 (solid line) and estimate f̂2 (dotted line).

We verify the performance of the proportional reduced-
order fault estimator by means of numerical simulations.
Next, the values used for the simulation of the hydraulic
system are presented.
MS = 0:1kg; RS = 2:1Ns=m; KS = 10

3N=m; Dp =
0:2m (Diameter of the piston),D = 0:01m; � = 840kg=m3;
B = 109N=m2; Cd = 0:7kg=m

3; Pa = 220�105N=m2;
Mp = 5�103kg; Rp = 104Ns=m; Kp = 5�105N=m:

WithK1 = 10; K2 = 10; K5 = 10; Kf1 = 2; Kf2 = 2;
and the following initials conditions:
5(0) = f1(0) = f2(0) = 0:001:

Note that the estimate fault converges to the actual fault.

7 Concluding remarks
We have tackled the diagnosis problem in nonlinear sys-
tems under failure conditions using the algebraic ob-
servability and the differential transcendence degree of
a differential �eld extension concepts. A reduced-order
uncertainty observer is used to estimate the fault vari-
able. Numerical simulations were presented to illustrate
the effectiveness of the suggested approach.
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