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Switching Effect Of Predation On Prey Species Living In Two Habitats
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Abstract: - Mathematical model with one prey species living in two different habitats and
a predator where a prey exhibits group defense has been studied. The preys are able to
migrate between two different habitats due to change in seasonal conditions. The stability
analysis of non zero equilibrium values (where both prey and predator species co-exist) has
been carried out. Hopf bifurcation points have been determined using rate of conversion of
the prey to predator as bifurcation parameter. It has been shown that for one predatory
rate, the Hopf bifurcation does not occur whereas for another predatory rate, the Hopf
bifurcation does occur.
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1 Introduction

In predator-prey system, it is of interest
to see how a predator feeds upon preys.
Predator prefers to feed itself in a habi-
tat for some time and changes its prefer-
ence to another habitat. This preferen-
tial phenomenon of change of habitats is
called switching. Two types of problems
have been studied in the past by various
authors, namely, (i) when the predator at-

tacks the preys in a habitat where they are
in abundance and (ii) when the preys have
ability to defend themselves, therefore the
predator attacks the preys in the habitat
where they are less in number. Khan et. al.
(1998) [1] and Bhatt et.al.(1999) [2] have
given a good account of the literature, par-
ticularly where preys show a group defense
property (group defense is a term used to
describe a phenomenon whereby predation
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is decreased or even prevented altogether
by the ability of the prey population to bet-
ter defend themselves when their number is
large). They have considered the following
model.
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(1)

for n =1 and 2, with z1(0) > 0, 22(0) >0

and y(0) > 0.
Where
x; : represents the population of the

prey species in two different habitats,

y :represents population of the preda-
tor species,

0B; : measure the feeding
predator on the prey species in habi-
tat 1 and habitat 2,

0; : conversion rate of the prey to the
predator

rates of the

€; : inverse barrier strength
out of the " habitat,

pij : the probability of successful tran-
sition from " habitat to j”* habi-
tat (where i # j),

«; @ per
prey species in
tats and

in going

birth rate of the
two different habi-

capita

u o death rate of predator.

The third term in the first two equa-
tions of (1) represents the interaction of
predator with preys in habitats 1 and 2 re-
spectively, giving the predation rate as

= —— 8 and ky =

For

w1 w9, ki — 0, ky — B (—il) > By
2
(3)

and

x> 11, k1 — 1 <?> > B, ks — 0
1
(4)

(3) and (4) show a switching behavior of
predators which attack the preys in the
habitat where they are less in number.

The object of present study is to re-
place (2) by

so that, for
x1 > 19, k1 — 0, kg — (9 and (6)
Ty > 11, k1 — 1, k2 — 0 (7)

which seems more plausible. The reason
being that the terms representing the inter-
action of prey and predator must be kix1y
and kozoy respectively with proper k; and
ko which give the switching behaviour such
that predators attack the habitat where
number of preys are less. We consider both
the models corresponding to n = 1 and
2. The stability analysis of the non zero
equilibrium values has been carried out.
The Hopf bifurcation points have been ob-
tained taking the conversion rate from prey
to predator as bifurcation parameter.
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It is interesting to note that for
n = 1 the Hopf bifurcation does not occur
(i.e. the system remains stable or unstable
for 0 < 6; <1land 0 <2 <1.), whereas
for n = 2, we do get Hopf bifurcation.

2 The Model

One - predator two - prey system where the
prey species exhibit group defense is given
by :

dxq
— = (a1r1 — e1m) + eporwy —
B1r1y
—
1+ <—>
xTo
dry
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- Baxay
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5262]?2.771”}
:1;171/4_'(17277/

(8)

with 1(0) > 0, 22(0) > 0 and
y(0)>0;n=1,2,3,....

We have carried out the analysis for n =1
and n = 2 and also compared the results
with Bhatt et. al. (1999) [2].

3 Stability of Equilibria
For n = 1: The non-zero equilibrium point
of the system (8) is given by:

o p@+1)
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T2
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The equilibrium values ( 77, 72, 7)
have to be positive, therefore,
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<

€2 P21
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Let £ = (x1,72,9) denotes the non zero
equilibrium point where 77, 75 and § > 0.
We investigate the stability of £ and the
bifurcation structure, particularly Hopf bi-
furcation, for the system (8) using 6; (con-
version rates of the prey to the predator)
as the bifurcation parameter. We first ob-
tain the characteristic equation for the lin-
earization of the system (8) near the equi-
librium. We consider a small perturbation
about the equilibrium value i.e. 1 = 71+u
, 2 = T2 + v and y = ¥ + w. Substituting
these into the system (8) and neglecting the
terms of second order in small quantities,
we obtain the stability equation

a— A —az —51111
1+
b b7 — ) —52111 =0,
1+
p pz? -

(12)
which leads to the eigenvalue equation
M4 b A2+ +b3=0  (13)
where by = bx — 1,

b, — P (B272 + 1)
2 1+7
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and

Also
4 = o e b1y
4 1 1 (1 + ’77)2 ’
ay — € B2y
b o= — d
< T ) + (1+7)? a
p = y(6151 + 02/32)

(1+7)

The Routh-Hurwitz stability criteria
for the third order system is by > 0, b3 > 0
and biby > bs. Hence the equilibrium E
will be locally stable to small perturbations
if it satisfies the following conditions:

: (14)
bB31 > af¥2 and (15)
(b3% +a)(BaT — 1) >0 (16)

Stability of the equilibrium point de-
pends upon the conditions (11), (14), (15)
and (16) together with various parameters.

T >

Sl S|

For n =2:

The non-zero equilibrium point is

given by :
- MXP+1)
LT 5B+ 693X
_ 1+ X2
%, — p(l+ X?)
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_ X
where X = X?l is the real positive root of

the following equation:
Bo(ar — e1)X? + (Boeapar — Breipi2) X
— Bi(az —e) =0
(18)
and a1 > € , as > € otherwise in the
model % < 0 and @ < 0 if there is no

migration, (11) is still to be satisfied.

Let By = (X1, X2, %) denotes the non-zero
equilibrium point where X1, Xo,5 > 0.
We investigate the stability of 1 and the
bifurcation structure, particularly Hopf bi-
furcation, for the system (8) using 6; (con-
version rates of the prey to the predator) as
the bifurcation parameter. Following the
procedure of the case n = 1, in this case
we get the stability conditions as:

A+B<0 (19)
(M +LX)(ABX?+Bp1) <0  (20)

and
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Stability of the equilibrium point de-
pends upon the conditions (11), (19), (20)
and (21) together with various parameters.

4 Hopf Bifurcation Analysis
For n =1:

We study the Hopf bifurcation for
the system (8) when n = 1 , using 6;
(rate of conversion of the prey in habitat
1 to the predator) as the bifurcation pa-
rameter. The eigenvalue equation (13) has
two purely imaginary roots if and only if
b1by = b3 for some value of 61 (say 61 = 61"
). For a < 0,b < 0 and p > 0 b1,b2 and
bg are positive. There exists 81" such that
b1bo = b3. Therefore there is only one value
of 61 at which we have a bifurcation. For
some € > 0 for which §;*—¢ > 0, there is a
neighbourhood of §;* | say (61 —¢, 6% +¢)
in which the eigenvalue equation (13) can-
not have real positive roots. For §; = 61* ,
we have

(A% +b2)(A+b1) =0 (22)

which has three roots,
/\1 = i\/@, AQ = — b2 and Ag = —bl.

The roots are in general of the form

AL(61) = w(br) +iv(é1)
Ao(61) = w(b1) —iv(61) (23)
A3(61) = —bi(61)

To apply the Hopf bifurcation the-
orem as stated in [3] (Marsden and Mec-
Cracken (1976)), we need to verify the
transversality condition

du

— #0 24
d51 61=61* ( )

Substituting Ag(61) = u(81) + iv (1)
into the equation (13) and differentiating
the resulting equations with respect to 01
and setting v = 0 and v(6;) = v1 , we get

du 9 dv
— (=397 b —(=2b117) =
d§1( 3u1° + 2) + d&l( 11)1)

b 52 —bs'

du dv
—(20177) + —(=3712 4+ by) =
d51( 1vl)+d51( 01 + by)

— b 0
(25)
where

dby ., db
B 1_0’ b2 Cdéy

dby

d by =—
an 3 d61

T is a real positive root of the equation (10)
which is independent of 67 .

du d
Solving for d_;ll and d—;l, we have
d 2by(b1by’ — bs'
a - _ 2(212 23) (26)
dby b1=61" 4bo” + 4b1°bo

To establish Hopf bifurcation at 61 = 617,
we need to show that

du

— £0 e biby' — by’ #£0. (27)
dé;

b1=61"

At 61 = 61% ; brby = b3 gives

_9 a
L= —. 28
=t (28)
Substituting the values of by, by’ and
b3’ in the equation (27) and using equation
(28), we get

1
bibe' — b’ = 57 (B2 — B1)(bT% + a)
<dp _ dfl )
a6, T A6, P
= 0at b =617,
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due to (28). Therefore there will be no bi-
furcation.

We summarize the above results in the fol-
lowing theorem -

THEOREM-1 : Suppose E = (x1,72,y)
exists and 61 be a positive root of the
equation biby = b3 , then a Hopf bifurca-

tion does not occur as 61 passes through
61",

Similar analysis can be carried out by vary-
ing 65 (rate of conversion of the prey in sec-
ond habitat to the predator) and we shall
get a similar result.

n=2:
We can follow similar steps for n = 2
as above and obtain the following theorem:

THEOREM-2 Suppose E; =
(X1,X5,Y) exists, A < 0,B < 0,M >
0,L > 0 and 6" be a positive root of
the equation b1bs = bs , then a Hopf
bifurcation occurs as 61 passes through §;*

provided & £ X2,
o

Similar analysis can be carried out varying
2 (rate of conversion of the prey in second
habitat to the predator) and we shall get a
similar result.

5 Numerical Solutions

Here we see the effect of various parame-
ters on the stability. Table 1 gives the be-
haviour of stability with respect to 3’s and
&’s.

In Table 1 we have taken:

p = 0.01,a; = 0.015,2 = 0.025,¢; =
0.02,e2 = 0.03, p12 = 0.3, p21 = 0.2 and we
see the effect of 6; and 65 on the stability
for n = 2.

In the case of n = 1, the system re-
mains stable for all the data in Table 1 and
we have no bifurcation points.

In Table 2 we see the effect of €’s and §’s

and we take:

1 =0.01,5 = 0.01, 8 =0.02 and n = 2.

SET (1). pia = 02,ps1 = 0.7,¢1 =
0.04,e5 = 0.03, 1 = 0.015, a = 0.025
SET (2). pi2 = 02,p21 = 0.7,¢1 =

0.1, =0.3, a1 = 0.05, 9 = 0.25
SET (3). pi2 = 05,p1 = 0.2,¢7 =
0.1, = 0.3, a1 = 0.05, 9 = 0.25

In Table 1 and Table 2 the bifurca-
tion points are in fact the Hopf bifurcation
points (where the model is stable, below
/ above these values the model is unsta-
ble/stable).

Using the four cases and values of pa-
rameters in Table 1, The set of equations
given in (8) have been integrated numeri-
cally for n = 1 and 2. The behaviour of (8)
is given in Table 3.

These sets were picked up while do-
ing the computations of the analytical re-
sults in the previous section. The initial
conditions used are the corresponding equi-
librium values in each case with slight per-
turbations.

Table 1
51 B2 81 / 62 STABLE UNSTABLE Bifurcation Point (n = 2)
0.01 | 0.02 |61 =0.11]0 <6 <0.062671 | 63 > 0.062672 b9 = 0.062671
0.02 | 0.01 | 61 = 0.1 | 69 > 0.159563 0 <69 <0.159562 | 69 = 0.159563
0.01 | 0.02 | 65 =0.3 | 61 > 0.478678 0 <61 <0.478687 | 61 = 0.478678
0.02 1001 |6,=03]0<6 <0.188014 | 61 > 0.188015 61 = 0.188014




2005 WSEAS Int. Conf. on DYNAMICAL SYSTEMS and CONTROL, Venice, Italy, November 2-4, 2005 (pp19-25)

Table 2

SET | 61 / 62 | STABLE UNSTABLE Bifurcation Point (n = 2)

(1) 61 =0.1 - 0<6<1 —
05 = 0.3 — 0<66 <1 —

(2) 61=01]10<6<1 — —
00=03]10<6<1 — —

(3) 01 =0.1]0 <68 <0.076571 | 62 > 0.076572 05 = 0.075671
0o =103 | 61 > 0.391793 0 <61 <0.391792 | 61 = 0.391793

Table 3

n B1 62 01 bo Behaviour

1 0.01 0.02 0.5 0.3 STABLE

1 0.01 0.02 0.1 0.3 STABLE

1 0.02 0.01 0.1 0.3 STABLE

1 0.02 0.01 0.3 0.3 STABLE

2 0.01 0.02 0.5 0.3 STABLE

2 0.01 0.02 0.1 0.3 UNSTABLE

2 0.02 0.01 0.1 0.3 STABLE

2 0.02 0.01 0.3 0.3 UNSTABLE
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