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Abstract: - The use of the power and energy functional in the analysis of the electric circuits makes it 
possible to appreciate the energetic equilibrium state attained in the circuit at a certain moment. In the 
present work, a power functional is built and its limit is determined. It is shown that the equilibrium 
state is one of a minimum energetic state. 
 
Key-Words: - electric circuits, Hilbert space, power functionals, minimum of functionals.  
 
1   Introduction 
Taking into consideration the functional and calculating 
their limits represents an important breakthrough in 
formulating and solving some problems related to the 
optimum. 
     The steady states in the mechanic, thermic, electric 
conservative systems generally represent limit states from 
an energetic point of view. For example [1], in the 
classical mechanics, Hamilton’s principle of the 
minimum action states that the development in time of a 
system, from one steady state to another steady state, 
happens along a curve nR]b,a[: →γ , which extremates 
the functional 

∫ +=
b

a
M dtUTF )(         (1)

called the integral of action, where T is the kinetic energy 
(the “life power”) of the system and U is the mechanical 
effect of the power system which works on the system 
under consideration. 
     In the theory of the electrical circuits, the results 
obtained by Millar [2] and Stern [3] related to the 
cocontent function for nonlinear resistive and reciprocal 
network have a special theoretic importance due to their 
generality. C. A. Desoer and E. Kuh, [4] (pp. 770-772), 
had proved the same generally properties of the 
minimum dissipated power for the linear and resistive 
networks. As well, the Romanian professors V. Ionescu 
[5] and C.I. Mocanu [6] (pp. 350-353), had important 

2005 WSEAS Int. Conf. on DYNAMICAL SYSTEMS and CONTROL, Venice, Italy, November 2-4, 2005 (pp225-230)



contributions at the theoretical development of the 
electrical circuits minimax theorems.  All these results 
are basically consequences of Maxwell’s principles of 
minimum-heat [7] (pp. 407-408). 
     The electromagnetic field analysis admits a 
differential formulation and a variational equivalent 
formulation. The mathematical variational model 
presumes the establishment of a variational principle 
capable to supply the equations of the differential 
mathematical model through the stationarity condition of 
an adequate functional. The energetic functional of the 
non-stationary electromagnetic field associated to the 
domain Dc and the volume V, is: 

∫ ∫ ρ−+∫ −=
cD

B
v

E
dxdydzVAJBdHEdDF

00
)}(){(        (2)

where: BHED ,,, are the vectors associated to the electric 
and magnetic field, A is the magnetic vector potential, V 
is the electric potential, J is the vector of  conduction 
current density, and vρ is the volume density of electric 
charge. On demonstrate that the condition of minimum 
of functional (2) involve the fundamental equations,  

, , vDdiv
t
DJHrot ρ=

∂
∂+= of the electromagnetic field.  

Analogue, the energetic functional for electrokinetic 
field, where the state quantity is the electric potential V, 
is defined by: 

∫ ∫ ∑∫ +=
∑c nD

n
J

VdnJdzxdydzEdJVF
0

1 )()(         (3)

     This paper presents three original contributions 
concerning the energetic functionals of the linear 
circuits. The first of them proposes an energetic 
functional for the linear circuits derived of the circuit 
equations properties.  The second represents an other 
demonstration which proves that the stationary 
(equilibrium) electrokinetic state for the d.c. networks 
represents a minimum energetic state as far as the power 
dissipated by the circuit elements, and the third one 
proposes an original and general principle of the 
minimum dissipated active and reactive power for the 
a.c. linear circuits. 
 
 
2. The Matrix Equations and the 
Minimum  of    Dissipated Power in D.C 
Circuits 
Let’s take the case of a reciprocal d.c. electric circuit, 
with l branches, in an equilibrium state. If G represents 
the graph of the circuit, then A is a tree and C its 
complementary tree. The branches voltages and the 
branches current verify the first and, respectively, the 
second theorem of Kirchhoff. The l-dimensional current 

and voltage matrix can be partitioned as follows  
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where an adequate notation has been used to point out 
the sub matrix that refer to the current and voltage links, 
and the respective branches; [ ] [ ]rBcC−=Λ  is the essential 
incidence matrix. So all the voltage generators become 
an equivalent current generators, the matrix relation of 
the branches currents becomes: 

[ ] [ ][ ]UGI =              (6)
where [G] is the square matrix of the branch 
conductance which can be partitioned under the form of: 

[ ] [ ][ ]
[ ][ ] 






=

rrrc

crcc
GG
GG

G              (7) 

     For the reciprocal circuits in stable electrokinetic state, 
the following power functional can be defined in the 
Hilbert space nR  

RRF n →:                  (8)

[ ] [ ]IUF T
2
1∆

=                  (9)

where the superscript T denotes transposition. By using 
the relations (4), (5), (6), (7) and (9), we can calculate  
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where [ ] [ ] 0== crcr GG  for the reciprocal electric 
circuits.  
     In relation (10), we have obtained the expression of 
the functional under consideration, based only on the 
matrix of the branch voltages. To determine its extreme 
we apply the function of matrix properties. If 

[ ] 0F rU(' = , results 

[ ] [ ][ ][ ] [ ] [ ]
[ ][ ][ ][ ] [ ][ ] 0

0)(
=+ΛΛ

=+ΛΛ

rrrrcrccrc

rrrcrccrc
T

r
UGUG

UGGU    (11) 

that is  
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[ ][ ] [ ] 0=+Λ rcrc II   (12) 
     Consequently, the extreme point of the functional 
verifies the first theorem of Kirchhoff. To demonstrate 
that extreme point of the functional is minimum, we 
presumably take a different matrix of the branch voltages, 

[ ] [ ] [ ]rrr UUU δ+=
∧

 
 

(13) 
 which introduced in expression (8) leads to: 
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     This demonstrates that the matrixes [ ][ ][ ]crccrc G ΛΛ  
and [ ]rrG  are positively defined, [8], so 
[ ][ ][ ] [ ] 0〉+ΛΛ cccrccrc GG  and results: 

[ ] [ ] )()( rr UFUF 〉
∧

 (15) 

this means that the functional has a minimum. According 
to definition (9), the functional [ ])( rUF represents the 
power dissipated at the terminals of all the branches of a 
reciprocal circuit in stable electrokinetic state. Therefore, 
the results obtained (12) shows that the stable 
electrokinetic state is a minimal power state dissipated 
by the branches of the circuit. 
     Consequently, we get the following principle (1st 
Principle of Minimum dissipated Power – PMP): the 
minimum of the dissipated power by the branches of 
linear and resistive circuit in stationary regime (d.c.) is 
satisfied by the solutions in the currents and voltages of 
the circuit, and these are the currents and voltages 
which verify the 1st and 2nd theorem of Kirchhoff.  
 
 
3. Hilbert Space Techniques for 
Determining the Minimum of the Active 
and Reactive Dissipated Power 
Functionals for Linear A.C. circuits 
We can demonstrate a similar principle for the 
cvasistationary regime (a.c.) of linear electric circuit.  

 
Fig. 1. A.c. circuit branch 

 
     By using the symbolical method, the voltage at every 
branch (fig.1) of the circuit is equal to:   
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k
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If we note: 
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where  Gk, Bk,  aE,k and bE,k are constants, then the 
complex conjugated current of branch k can be 
expressed [9]: 
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The complex power dissipated by the admittances of all the 
L branches of the circuit is: 
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     The real and imaginary parts of the complex power can 
be defined as the functionals in Hilbert space [10]  

kjV ,

ni kI kY  
kE  
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 and they are quite obviously a function class 2C  
in NR2 , and are positively defined, [9], i.e. for all the 
pair 

,,...,1 ),,( Niyx ii = then:
0),...,,,,...,,( 2121 〉NNR yyyxxxF      

 and 0),...,,,,...,,( 2121 〉NNI yyyxxxF .  
     Consequently, the minimum points of the real and 
imaginary component of the complex power 
functionals, [10],  are the solutions of the system  which 
contains 4N equations:  
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If we calculate the algebrical sum of the solutions, with 
one of them multiplied with (-1) or ±j , we obtain the 
expressions: 

∑ ∑ ==∑ =
∈ ∈∈ 21

    0 ,...,0  ,0 ***

nl nl
kk

nl
k

k Nkk
III  (21) 

which are identical with the Kirchhoff’s equations for 
currents (1st Kirchhoff theorem), expressed in all the N 
nodes of the circuit. 
     Consequently, the following principle can be issued 
(2nd Principle of Minimum Active and Reactive 
dissipated Power –PMARP): the minimum of the active 
and reactive dissipated power by the branches of a 
linear circuit in a cvasistationary regime (a.c.) is 
satisfied by the solutions in currents and voltages of the 
circuit, and these are the currents and voltages that 
verify the 1stand 2nd theorem of Kirchhoff.    
 

 

4. Examples 
 
4.1. Determination of the minimum power 
functional for a d.c. circuit 
We consider the d.c. circuit shown in figure 2, where 

VERRR 4,3,2,1 1321 =Ω=Ω=Ω= .Because 

12 VVU r −= , the power functional dissipated by the  
 
 
 

 
 
 
 

 
 
 
 

Fig. 2. D.c. circuit with three branches 
 

branches of the circuit, (9), are calculated depending on 
potentials 21,VV : 
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The minimum of the power functional are the 
solutions of the system 

which represent the 1st theorem of Kirchhoff expressed 
in node 1 and 2. We calculate using PSPICE and 
MATHCAD the variation of the dissipated powers 

321 ,, PPP  depending by the currents 321 ,, III , shown 
respectively in figures 3, 4 and 5. Using  Thèvenin’s 
theorem, we obtain the expressions: 

,3,2,)( ,0, =−= iIIRUP iiieii where ,, ,0, iei RU  
are the open voltage and the equivalent resistance of the 
circuit at the terminals of branch 2, respectively 3. 
     It is remarked that the dissipated power in each 
branch is a minimum value compared with the 
maximum value of the power, which is obtained for the 

current value of short-circuit divided by 2 (
2
scI
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As well, we observe in figures 3, 4, and 5,  the existence 
of two current branch values which correspond with  
the value of dissipated power for each  branch 
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Only one of these values verifies the Kirchhof’s 
theorems ( '

3
'
2

'
1 ,, III ).  

     Generally speaking, for the branches with 
resistances, these current values represent the roots of 

a second degree equation: ).1(
2

0'','
RR
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R
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I
e
e

e +
−

±=  

The graphic positions of these two values of current 

compared with the value 
2
scI

 are depending of the 

resistance value:  if   eRR〈 , 
2

' scI
I 〉 , and if   eRR〉 , 

2
'' scI

I 〈 , which is presented in the graphics of figures 4 

respectively 5. . 
     In conclusion, the currents of circuits are distributed 
so that they verify 1st Kirchhoff theorem and the powers 
dissipated by the circuit are minimum. 
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Fig. 3. The variation of P1 

 

 
Fig. 4. The variation of P2 

 

 
Fig. 5. The variation of P3 

 
 
4.2.Determination of the minimum power functional 
for a.c. circuits 
We consider the a.c. circuit shown in figure 6. The 
expressions of the complex potentials, of the complex 
source and the expression of the complex conjugated 
currents (15), of the circuit are: 

 
Fig. 6. A.c. circuit with three branches 
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     The total complex dissipated power of the 
admittances of the circuit is (16): 
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If the variables are x1 and y1, which are the real and 
imaginary parts of the potential 1V , the minimum of the 
functionals (17) is the solution of the system: 
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If we sum the first equation of system with the third 
equation multiplied with ( j− ), and if we sum the second 
equation multiplied with ( j− ) with the forth equation, 
we obtain the 1st theorem of Kirchhoff expressed in node 
1: 
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     We obtain a similar result if the variables of the 
system will be x2 and y2, which are the real and 
imaginary parts of the potential 2V :       
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and the solution of the system verifies the equation: 
∑ ==−−
∈ 2
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which represent the 1st theorem of Kirchhoff expressed 
in node 2. 
   
 
5.Conclusions 
To determine the extreme of the power functional in case 

of the linear circuits is a problem of utmost importance, 
with quite useful didactic, theoretical and practical 
applications. 
     Using the variational principles it has been 
established that the solutions of the linear electric d.c. 
and a.c. circuit represent a minimum of the dissipated 
power in the stationary regime of the circuit.  
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