
A Memetic Algorithm for Logic Circuit Design

CECÍLIA REIS, J. A. TENREIRO MACHADO J. BOAVENTURA CUNHA
Electrical Engineering Department Engineering Department
Institute of Engineering of Porto Univ. of Trás-os-Montes and Alto Douro

R. Dr. António Bernardino de Almeida, Porto Apt. 1013, 5000-911 Vila Real
PORTUGAL PORTUGAL

Abstract: - Memetic Algorithms (MAs) have shown to be very effective in solving many hard combinatorial
optimization problems. In this perspective, this paper presents a MA for combinational logic circuits synthesis.
The proposed MA combines a Genetic Algorithm (GA) for digital circuit design with the gate type local search
(GTLS). The combination of a global and a local search is a strategy used by many successful hybrid
optimization approaches. The main idea is to apply a local refinement to an Evolutionary Algorithm (EA) in
order to improve the fitness of the individuals in the population. The obtained results indicate that the MA
reduces the number of generations required to reach the solutions and its standard deviation while improves the
final fitness function.

Key-Words: - Artificial intelligence, Digital circuits, Evolutionary computation, Genetic algorithms, Logic
design, Memetic algorithms.

1 Introduction
In the last decade genetic algorithms (GAs) have
been applied in the design of electronic circuits,
leading to a novel area of research called
Evolutionary Electronics (EE) or Evolvable
Hardware (EH) [1].
 EE considers the concept for automatic design of
electronic systems. Instead of using human conceived
models, abstractions and techniques, EE employs
search algorithms to develop good designs.
 One decade ago Sushil and Rawlins (1991) applied
GAs to the combinational circuit design problem [2].
John Koza (1992) adopted Genetic Programming
(GP) for the design of combinational circuits through
AND, OR and NOT logic gates [3].
 Coello, Christiansen and Aguirre (1996) presented
a computer program capable of generating high-
quality circuit designs [4]. They used five possible
types of gates (AND, NOT, OR, XOR and WIRE)
with the objective of finding a functional design
minimizing the use of gates other than WIRE
(essentially a logical no-operation).
 Most of the approaches described so far use pure
evolutionary methods. This state of affairs motivated
the appearance of hybrid techniques in logic circuit
design. As it is known, EAs are restricted to relatively
simple circuits (with small truth tables). However, the
most interesting aspect of evolutionary design is the
possibility of studying the emergent patterns [5].
 Following this line of research, this paper proposes

a hybrid algorithm, named Memetic Algorithm (MA)
[6] for the design of combinational logic circuits.
Section 2 gives an overview of the background and
related work. Section 3 describes the MA approach
and presents the adaptation and implementation
details. Section 4 compares the GA versus the MA
results. Section 5 studies the MA convergence while
section 6 outlines the scalability problem in logic
circuit synthesis. Finally, section 7 summarizes the
main conclusions.

2 Background and Related Work
In our previous work, we have developed a GA for
combinational logic circuits design [7]. The circuits
are specified by a truth table, can have multiple
inputs and multiple outputs, and the goal is to
implement a functional circuit with the least possible
complexity. For that purpose, it is defined a set of
logic gates and the circuits are generated with
components of that specific set.
 Table I shows the four gate sets defined, being Gset
2 the simplest one (i.e., a RISC-like set) and Gset 6 a
more complex gate set (i.e., a CISC-like set).
 For each gate set, the GA searches the solution
space of a function through a simulated evolution
aiming the survival of the fittest strategy. In general,
the best individuals of any population tend to
reproduce and survive, thus improving successive
generations. However, inferior individuals can, by
chance, survive and reproduce [8]. In our case, the

2005 WSEAS Int. Conf. on DYNAMICAL SYSTEMS and CONTROL, Venice, Italy, November 2-4, 2005 (pp598-603)

individuals are digital circuits, which can evolve until
the solution is reached (in terms of functionality and
complexity).

Table 1 Gate sets

Gate Set Logic gates
Gset 6 {AND,OR,XOR,NOT,NAND,NOR,WIRE}
Gset 4 {AND,OR,XOR,NOT,WIRE}
Gset 3 {AND,OR,XOR,WIRE}
Gset 2 {AND,XOR,WIRE}

 In what concerns to the circuit encoding as a
chromosome, EH systems develop chromosomes that
encode the functional description of a given circuit.
As with many GA applications, the resulting circuit is
the phenotype, as it comprises several smaller logic
cells or genotypes. The adopted terminology reflects
the conceptual similarity between EH, natural
evolution and genetics.
 In the GA scheme a rectangular matrix
(row × column = r × c) of logic cells encodes de
circuits (figure 1).
 Three genes represent each cell:
<input1><input2><gate type>, where input1 and
input2 are one of the circuit inputs, if they are in the
first column, or one of the previous outputs, if they
are in other columns. The gate type is one of the
elements adopted in the gate set. As many triplets of
this kind, as the matrix size demands, constitute the
chromosome. For example, the chromosome that
represents a 3 × 3 matrix is depicted in figure 2.

Fig. 1: A 3 × 3 matrix A representing a circuit with

input X and output Y.

...

...

Input Input Gate

0 1 2

a11

Input Input Gate

24 25 26

a33

genes

matrix element

Fig. 2: Chromosome for the 3 × 3 matrix of figure 1.

 The GA starts by generating the initial population
of circuits (strings) at random. The search is then
carried out among this population. The three different
operators used are reproduction, crossover and
mutation, as described in the sequel.
 Successive generations of new strings are
reproduced on the basis of their fitness function. In
this case, tournament selection [8] is used to select
the strings from the old population, up to the new
population.
 For the crossover operator, the strings in the new
population are grouped together into pairs at random.
Single point crossover is then performed among
pairs. The crossover point is only allowed between
cells to maintain the chromosome integrity.
 The mutation operator changes the characteristics
of a given cell in the matrix. Therefore, it modifies
the gate type and the two inputs, meaning that a
completely new cell can appear in the chromosome.
An elitist algorithm is applied to retain the best
solutions for the next generation.
 To run the GA we have to define the number of
individuals to create the initial population P. This
population is always the same size across the
generations, until the GA reaches the solution.
 The crossover rate CR represents the percentage of
the population P that reproduces in each generation.
Likewise, MR is the percentage of the population P
that mutates in each generation.
 The calculation of the fitness function F has two
parts f1 and f2 that measure the functionality and the
simplicity, respectively. Firstly, we compare the
output produced by the GA-generated circuit with the
expected values, according with the truth table, on a
bit-per-bit basis (i.e., f1). Once the circuit is
functional, the GA tries to generate circuits with the
least number of gates. Therefore, the index f2, that
measures the simplicity, is increased by one (zero) for
each wire (gate) of the generated circuit, yielding:

f10 = 2ni × no (1a)
f1 = f1 + 1
if {bit i of Y} = {bit i of YR} , i = 1, …, f10

(1b)

f2 = f2 + 1 if gate type = wire (1c)

⎩
⎨
⎧

≥+
<

=
1021

101

,
,

fFff
fFf

F (1d)

where ni and no represent the number of inputs and
outputs of the circuit.
 The GA has three stop criteria with the following
hierarchy: i) based on the matrix size, it is reached a
possible best solution; ii) the variation of the average

X
Inputs

a11

a31

a21

a12

a32

a22

a13

a23
Y

Outputs

a33

2005 WSEAS Int. Conf. on DYNAMICAL SYSTEMS and CONTROL, Venice, Italy, November 2-4, 2005 (pp598-603)

fitness function, for 10 consecutive generations, is
less or equal to 1 (meaning that the algorithm has
stabilized) and iii) after having attained 10.000
generations.

3 The Memetic Algorithm
In this work we adopt a MA, that is, an evolutionary
algorithm that includes a stage of individual
optimization as part of its search strategy, being the
individual optimization in the form of a local search.
MAs are inspired by models of adaptation in natural
systems that combine evolutionary adaptation of
populations of individuals with individual learning
within a lifetime. As it is known, MAs are
metaheuristics that take advantage of the evolutionary
operators in determining interesting regions of the
search space. Moreover, MAs adopt a local search
that rapidly finds good solutions in a small region of
the search space. Additionally, MAs are inspired by
Richard Dawkins’ concept of a meme, which
represents a unit of cultural evolution that can exhibit
local refinement [9]. Bearing these ideas in mind,
figure 3 presents the MA implemented in this work.
 As figure 4 shows the proposed MA includes a GA
and a local search algorithm, where the GA
corresponds to the algorithm implemented in first
stage of development.

Fig. 3: The memetic algorithm.

Fig. 4: GA and a local search algorithm.

 Over the last decade, MAs have relied on the use of
a variety of different methods as the local

improvement procedure. Some recent studies on the
choice of local search method employed have shown
that this choice significantly affects the efficiency of
problem searches.
 The local search method investigates a small area
around a solution and adopts the best-found solution.
By other words, the procedure tries to find a fitter
solution in the neighborhood of the current solution.
If the algorithm finds a better solution, then the new
solution replaces the current solution, and the
neighborhood restarts. Local search methods are
iterative algorithms that seek to enhance the solution
by stepwise improvements. The simplest form of
local search attempts to swap elements in
combinatorial optimization problems.
 In our case, it is implemented a gate type local
search (GTLS) algorithm as shown in figure 5.

Fig. 5: The Local Search Algorithm.

4 Computational Results for the GA
and the MA Implementations
This section shows the implementation of four
different combinational logic circuits, namely, a 2-to-
1 multiplexer, a one-bit full adder, a four-bit parity
checker and a two-bit multiplier, using the GA and
the MA algorithms.
 Due to the stochastic nature of the GAs in order to
evaluate its performance, for each gate set we
perform 20 simulations. The best gate set is the one
that presents the solution with the higher final fitness
function F requiring the smaller number of
generations N and the smaller standard deviation S.

4.1 2-to-1 multiplexer

The first case study is a 2-to-1 multiplexer circuit,
with a truth table with three inputs {S0, I1, I0} and one
output {O}. The matrix has a size of r × c = 3 × 3 and
the length of each string representing a circuit (i.e.,
the chromosome length) is CL = 27. Since the 2-to-1
multiplexer has ni = 3 and no = 1, it results f10 = 8 and
F ≥ 12.

GGEENNEETTIICC AALLGGOORRIITTHHMM
((GGlloobbaall sseeaarrcchh aallggoorriitthhmm

tthhaatt ggeenneerraatteess tthhee iinniittiiaall ssoolluuttiioonnss))
++

LLOOCCAALL SSEEAARRCCHH
((SSoolluuttiioonn iimmpprroovveemmeenntt aallggoorriitthhmm

tthhrroouugghh sstteeppwwiissee cchhaannggeess ooff tthhee iinniittiiaall ssoolluuttiioonnss))

GGeenneerraattee iinniittiiaall ppooppuullaattiioonn
EEvvaalluuaattee tthhee ppooppuullaattiioonn
WWhhiillee tthhee ssttoopp ccrriitteerriiaa nnoott aatttteennddeedd

SSeelleeccttiioonn
CCrroossssoovveerr
MMuuttaattiioonn
AAppppllyy LLooccaall SSeeaarrcchh AAllggoorriitthhmm
EEvvaalluuaattee nneeww ppooppuullaattiioonn

EEnndd

FFoorr aallll ppooppuullaattiioonn
FFoorr tthhee eennttiirree cchhrroommoossoommee,, ssuubbssttiittuuttee tthhee ggeennee gate type
wwiitthh aa nneeiigghhbboouurr

IIff tthhee nneeww ssoolluuttiioonn hhaass bbeetttteerr ffiittnneessss
NNeeww ssoolluuttiioonn rreeppllaacceess oolldd ssoolluuttiioonn

 EEnndd FFoorr
EEnndd

2005 WSEAS Int. Conf. on DYNAMICAL SYSTEMS and CONTROL, Venice, Italy, November 2-4, 2005 (pp598-603)

 Table 2 shows the average number of generation
Nav, the standard deviation Sav and the average fitness
function Fav, for each gate set and for the GA and the
MA algorithms. We can see that, the best case occurs
for Gset 3 with the MA algorithm, because it leads to
the smallest Nav and the best Fav.

Table 2 GA and MA results for all circuits

2-to-1 multiplexer
 Nav Sav Fav
Gate Set GA MA GA MA GA MA
Gset 6 27.15 10.15 10.00 3.65 10.25 11.55
Gset 4 19.75 5.40 4.29 3.23 10.35 11.95
Gset 3 13.55 3.05 2.98 1.10 10.65 12.00
Gset 2 12.05 6.55 2.78 3.69 11.15 11.80

One-bit full adder
 Nav Sav Fav

Gate Set GA MA GA MA GA MA
Gset 6 72.45 15.30 52.98 1.75 18.15 19.00
Gset 4 53.65 14.00 29.11 0.86 18.35 19.00
Gset 3 32.40 13.40 10.60 0.50 18.45 19.00
Gset 2 34.86 17.70 6.44 4.59 18.57 18.30

Four-bit parity checker
 Nav Sav Fav

Gate Set GA MA GA MA GA MA
Gset 6 32.55 2.50 8.85 0.51 21.70 25.10
Gset 4 20.40 2.05 5.05 0.22 21.95 25.85
Gset 3 13.75 2.00 1.80 0.00 22.65 26.00
Gset 2 7.95 2.05 4.10 0.39 23.95 24.50

Two-bit multiplier
 Nav Sav Fav

Gate Set GA MA GA MA GA MA
Gset 6 1699 56.10 1713 11.59 69.15 70.15
Gset 4 1183 61.85 1652 20.05 69.50 70.70
Gset 3 432 60.05 595 22.85 70.25 71.25
Gset 2 362 293.05 357 225.32 70.45 69.70

4.2 One-bit full adder

The second case study is a one-bit full adder circuit,
with a truth table with three inputs {A, B, Cin} and
two outputs {S, Cout}. In this case, the matrix has a
size of r × c = 3 × 3, and the length of each string
representing a circuit (i.e., the chromosome length) is
CL = 27. Since the one-bit full adder has ni = 3 and
no = 2, it results f10 = 16 and F ≥ 20.
 Table 2 shows Nav, the standard deviation Sav and
Fav, for each gate set and for the GA and MA
algorithms. We conclude that, once again, the best
case occurs for Gset 3 and for the MA algorithm.

4.3 Four-bit parity checker

The third case study consists on a four-bit parity
(even) checker circuit, with a truth table having four
inputs {A3, A2, A1, A0} and one output {P}. The size
of the matrix is r × c = 4 × 4 and the chromosome
length is CL = 48. In this case ni = 4 and no = 1,
resulting f10 = 16 and F ≥ 24.
 Table 2 shows Nav, the standard deviation Sav and
Fav, for each gate set, and for the GA and the MA
algorithms. Once again, we conclude that Gset 3 in
conjunction with the MA algorithm is the best gate
set for generating the combinational logic circuit.

4.4 Two-bit multiplier

The fourth case study is a two-bit multiplier.
Therefore, the truth table has four inputs {A1, A0, B1,
B0} and four outputs {C3, C2, C1, C0}. The
corresponding matrix is r × c = 4 × 4 dimensional, the
chromosome as size CL = 48, and it yields ni = 4 and
no = 4, leading to f10 = 64 and F ≥ 72.
 Table 2 shows Nav, the standard deviation Sav and
Fav, for each gate set for the GA and the MA
algorithms. The best results are obtained applying the
MA algorithm but, in this case, Gset 6 is the best in
terms of Nav being Gset 3 superior in respect to Fav..
 Figure 6 depicts the average of the fitness function
Fav versus the average number of generations to
achieve the solution Nav, for the GA and the MA
algorithms, for all gate sets and all circuits under
analysis.

10

100

1 10 100 1000 10000

N av

F
av

Gset 6 GA
Gset 6 MA
Gset 4 GA
Gset 4 MA
Gset 3 GA
Gset 3 MA
Gset 2 GA
Gset 2 MA

2-to-1 Multiplexer

1-bit Full Adder

4-bit Parity Checker

2-bit Multiplier

Fig. 6: Average fitness function Fav versus the

average number of generations Nav to achieve the
solution for P = 3000.

 The superior performance of the MA algorithm is
obvious for all gate sets and all circuits, particularly
in the perspective of the Nav. Moreover, Gset 3

2005 WSEAS Int. Conf. on DYNAMICAL SYSTEMS and CONTROL, Venice, Italy, November 2-4, 2005 (pp598-603)

demonstrates to be the most efficient gate set.

5 Convergence Analysis
This section addresses an important issue of the
evolutionary algorithms because in general, due to
their stochastic nature, the algorithms may present
convergence problems. In this line of thought, we
analyze the average number of generations Nav to
achieve the solution and the standard deviation Sav,
for different population sizes P.
 Figure 7 shows Nav versus P for the MA algorithm
and the four-bit parity checker circuit. In fact, this
figure illustrates also the case of the other circuits,
because they present similar type of charts.

1.E+00

1.E+01

1.E+02

1.E+03

1.00E+00 1.00E+01 1.00E+02 1.00E+03

P

N
av

Gset 2
Gset 3
Gset 4
Gset 6

Fig. 7: Average number of generations Nav to achieve
the solution versus the population size P, for the MA
algorithm and for the four-bit parity checker circuit,

using all gate sets.

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.00E+00 1.00E+01 1.00E+02 1.00E+03
P

S
av

Gset 2
Gset 3
Gset 4
Gset 6

Fig. 8: Standard deviation of the number of
generations to achieve the solution Sav versus the

population size P, for the MA algorithm and the four-
bit parity checker circuit, using all gate sets.

 Figure 8 shows the standard deviation of the

number of generations to achieve the solution Sav
versus the population size P, for the MA algorithm
and the four-bit parity checker circuit for all the gate
sets.
 Combining the two charts presented previously, we
get the plot of Sav versus Nav depicted in figure 9. This
locus demonstrates the structural behavior of the
algorithm convergence. It is clear that, ignoring the
processing time, we obtain the better results (a low
number of generations to achieve the solution with a
low standard deviation) the higher the population P.
Similar conclusions result for the other gate sets and
rest of the circuits.
 For comparison it is also included the locus of the
GA scheme for identical conditions.

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.00E+00 1.00E+01 1.00E+02 1.00E+03 1.00E+04 1.00E+05

N av

S
av

GA

MA

P=2

P=1000

P=2

Gset 2

Fig. 9: Standard deviation of the number of

generations to achieve the solution Sav versus the
average number of generations to achieve the solution

Nav for the MA and the GA algorithms, with Gset 2
and the four-bit parity checker circuit.

6 Scalability Analysis
Another issue that emerges with the increasing
number of the circuit inputs and outputs is the
scalability problem. Since the truth table grows
exponentially, the computational burden to achieve
the solution increases dramatically.
 Figure 10 shows the evolution of Fav versus Nav for
the parity checker family of circuits, for an increasing
number of bits. The parity checker family is {2, 3, 4,
5 and 6 bit}.
 Analyzing the plots for the parity checker family of
figure 10 we verify numerically that, after elapsing an
initial ‘transient’, we have an exponential law given
by:

ℜ∈= βαα β ,avN
av eF (2)

2005 WSEAS Int. Conf. on DYNAMICAL SYSTEMS and CONTROL, Venice, Italy, November 2-4, 2005 (pp598-603)

1

10

100

1 10 100

N av

F
av

Gset 6 GA
Gset 4 GA
Gset 3 GA
Gset 2 GA
Gset 6 MA
Gset 4 MA
Gset 3 MA
Gset 2 MA

Parity Checker Family

Fig. 10: Fav versus Nav for the parity checker family,
for the GA and the MA algorithms and for the Gsets

under evaluation for P = 3000.

 Table 3 presents the coefficients (α, β) that result
for each gate set and for each of the algorithms. For
the GA algorithm and with respect to coefficient α
we can say that Gset 2 is the best one, Gsets 3 and 4
are similar and that Gset 6 is the less performing. It is
possible to group Gsets 6, 4 (inferior performance)
and Gsets 2, 3 (superior performance) in terms of
coefficient β, that captures the growth characteristics.
On the other hand, for the MA algorithm, it is
possible to group gate sets 6, 4, 3 for both
coefficients while Gset 2 exhibits an inferior
behavior.

Table 3 Coefficients of equation 2

 GA MA
Gate Set α β α β
Gset 6 9.8 0.0214 2 1.06
Gset 4 12.3 0.0257 1.92 1.14
Gset 3 12.2 0.0408 2.33 1.17
Gset 2 21.2 0.0433 8.44 0.47

7 Conclusions
In general, most real world problems are too complex
for any single optimization technique to solve it in
isolation. The modern trend and philosophy for
constructing fast, globally convergent algorithms is to
combine a simple globally convergent algorithm with
a fast locally convergent heuristic, to form a more
suitable and faster hybrid.
 GAs are well known for exploring the solution
space effectively but are unable to fine-tune the
search. In order to improve the GAs search
capabilities, a local search technique is often

integrated with a GA to form a hybrid called Memetic
Algorithms. Accordingly, the hybrid MA tends to
incorporate the exploration capability of GAs with
the exploitation features of local search, which we
have confirm in this work.
 The performed experiments have shown that the
MA proposed in this paper is highly effective in
combinational logic circuit design when compared
with classical GA approaches. Furthermore, the local
search technique was able to enhance the
convergence rate of the Evolutionary Algorithm by
finely tuning the search on the immediate area of the
landscape considered.

References:
[1] Zebulum, R. S., Pacheco, M. A. and Vellasco, M.

M., Evolutionary Electronics: Automatic Design
of Electronic Circuits and Systems by Genetic
Algorithms, CRC Press, 2001.

[2] Louis, S.J. and Rawlins, G. J., “Designer Genetic
Algorithms: Genetic Algorithms in Structure
Design,” in Proceedings of the Fourth
International Conference on Genetic Algorithms,
1991.

[3] Koza, J. R., Genetic Programming. On the
Programming of Computers by means of Natural
Selection, MIT Press, 1992.

[4] Coello, C. A., Christiansen, A. D. and Aguirre, A.
H., “Using Genetic Algorithms to Design
Combinational Logic Circuits”, Intelligent
Engineering through Artificial Neural Networks.
Vol. 6, 1996, pp. 391-396.

[5] Miller, J. F., Job, D. and Vassilev, V. K.,
“Principles in Evolutionary Design of Digital
Circuits – Part I”, Genetic Programming and
Evolvable Machines 1(1/2), 7-35, 2000.

[6] P. Moscato, “On Evolution, Search,
Optimization, Genetic Algorithms and Martial
Arts: Towards Memetic Algorithms”, Tech. Rep.
Caltech Concurrent Computation Program,
Report. 826, California Institute of Technology,
Pasadena, California, USA, 1989.

[7] Cecília Reis, J. A. Tenreiro Machado, and J.
Boaventura Cunha, “Evolutionary Design of
Combinational Logic Circuits”, Journal of
Advanced Computational Intelligence and
Intelligent Informatics, Fuji Technology Press,
Vol. 8, No. 5, pp. 507-513, Sep. 2004.

[8] Goldberg, D. E., Genetic Algorithms in Search
Optimization and Machine Learning, 1989,
Addison-Wesley.

[9] Dawkins, R., “The Selfish Gene”, Oxford
University Press, New York, 1976.

2005 WSEAS Int. Conf. on DYNAMICAL SYSTEMS and CONTROL, Venice, Italy, November 2-4, 2005 (pp598-603)

