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Abstract: - Memetic Algorithms (MAs) have shown to be very effective in solving many hard combinatorial 
optimization problems. In this perspective, this paper presents a MA for combinational logic circuits synthesis. 
The proposed MA combines a Genetic Algorithm (GA) for digital circuit design with the gate type local search 
(GTLS). The combination of a global and a local search is a strategy used by many successful hybrid 
optimization approaches. The main idea is to apply a local refinement to an Evolutionary Algorithm (EA) in 
order to improve the fitness of the individuals in the population. The obtained results indicate that the MA 
reduces the number of generations required to reach the solutions and its standard deviation while improves the 
final fitness function. 
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1   Introduction 
In the last decade genetic algorithms (GAs) have 
been applied in the design of electronic circuits, 
leading to a novel area of research called 
Evolutionary Electronics (EE) or Evolvable 
Hardware (EH) [1]. 
   EE considers the concept for automatic design of 
electronic systems. Instead of using human conceived 
models, abstractions and techniques, EE employs 
search algorithms to develop good designs. 
   One decade ago Sushil and Rawlins (1991) applied 
GAs to the combinational circuit design problem [2]. 
John Koza (1992) adopted Genetic Programming 
(GP) for the design of combinational circuits through 
AND, OR and NOT logic gates [3]. 
   Coello, Christiansen and Aguirre (1996) presented 
a computer program capable of generating high-
quality circuit designs [4]. They used five possible 
types of gates (AND, NOT, OR, XOR and WIRE) 
with the objective of finding a functional design 
minimizing the use of gates other than WIRE 
(essentially a logical no-operation). 
   Most of the approaches described so far use pure 
evolutionary methods. This state of affairs motivated 
the appearance of hybrid techniques in logic circuit 
design. As it is known, EAs are restricted to relatively 
simple circuits (with small truth tables). However, the 
most interesting aspect of evolutionary design is the 
possibility of studying the emergent patterns [5]. 
   Following this line of research, this paper proposes 

a hybrid algorithm, named Memetic Algorithm (MA) 
[6] for the design of combinational logic circuits. 
Section 2 gives an overview of the background and 
related work. Section 3 describes the MA approach 
and presents the adaptation and implementation 
details. Section 4 compares the GA versus the MA 
results. Section 5 studies the MA convergence while 
section 6 outlines the scalability problem in logic 
circuit synthesis. Finally, section 7 summarizes the 
main conclusions. 
 
 
2   Background and Related Work 
In our previous work, we have developed a GA for 
combinational logic circuits design [7]. The circuits 
are specified by a truth table, can have multiple 
inputs and multiple outputs, and the goal is to 
implement a functional circuit with the least possible 
complexity. For that purpose, it is defined a set of 
logic gates and the circuits are generated with 
components of that specific set. 
   Table I shows the four gate sets defined, being Gset 
2 the simplest one (i.e., a RISC-like set) and Gset 6 a 
more complex gate set (i.e., a CISC-like set). 
   For each gate set, the GA searches the solution 
space of a function through a simulated evolution 
aiming the survival of the fittest strategy. In general, 
the best individuals of any population tend to 
reproduce and survive, thus improving successive 
generations. However, inferior individuals can, by 
chance, survive and reproduce [8]. In our case, the 

2005 WSEAS Int. Conf. on DYNAMICAL SYSTEMS and CONTROL, Venice, Italy, November 2-4, 2005 (pp598-603)



individuals are digital circuits, which can evolve until 
the solution is reached (in terms of functionality and 
complexity). 
 

Table 1 Gate sets 
 

Gate Set Logic gates 
Gset 6 {AND,OR,XOR,NOT,NAND,NOR,WIRE}
Gset 4 {AND,OR,XOR,NOT,WIRE} 
Gset 3 {AND,OR,XOR,WIRE} 
Gset 2 {AND,XOR,WIRE} 

 
   In what concerns to the circuit encoding as a 
chromosome, EH systems develop chromosomes that 
encode the functional description of a given circuit. 
As with many GA applications, the resulting circuit is 
the phenotype, as it comprises several smaller logic 
cells or genotypes. The adopted terminology reflects 
the conceptual similarity between EH, natural 
evolution and genetics. 
   In the GA scheme a rectangular matrix 
(row × column = r × c) of logic cells encodes de 
circuits (figure 1). 
   Three genes represent each cell: 
<input1><input2><gate type>, where input1 and 
input2 are one of the circuit inputs, if they are in the 
first column, or one of the previous outputs, if they 
are in other columns. The gate type is one of the 
elements adopted in the gate set. As many triplets of 
this kind, as the matrix size demands, constitute the 
chromosome. For example, the chromosome that 
represents a 3 × 3 matrix is depicted in figure 2. 
 

 
Fig. 1: A 3 × 3 matrix A representing a circuit with 

input X and output Y. 
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Fig. 2: Chromosome for the 3 × 3 matrix of figure 1. 

 
 

   The GA starts by generating the initial population 
of circuits (strings) at random. The search is then 
carried out among this population. The three different 
operators used are reproduction, crossover and 
mutation, as described in the sequel. 
   Successive generations of new strings are 
reproduced on the basis of their fitness function. In 
this case, tournament selection [8] is used to select 
the strings from the old population, up to the new 
population. 
   For the crossover operator, the strings in the new 
population are grouped together into pairs at random. 
Single point crossover is then performed among 
pairs. The crossover point is only allowed between 
cells to maintain the chromosome integrity. 
   The mutation operator changes the characteristics 
of a given cell in the matrix. Therefore, it modifies 
the gate type and the two inputs, meaning that a 
completely new cell can appear in the chromosome. 
An elitist algorithm is applied to retain the best 
solutions for the next generation. 
   To run the GA we have to define the number of 
individuals to create the initial population P. This 
population is always the same size across the 
generations, until the GA reaches the solution. 
   The crossover rate CR represents the percentage of 
the population P that reproduces in each generation. 
Likewise, MR is the percentage of the population P 
that mutates in each generation. 
   The calculation of the fitness function F has two 
parts f1 and f2 that measure the functionality and the 
simplicity, respectively. Firstly, we compare the 
output produced by the GA-generated circuit with the 
expected values, according with the truth table, on a 
bit-per-bit basis (i.e., f1). Once the circuit is 
functional, the GA tries to generate circuits with the 
least number of gates. Therefore, the index f2, that 
measures the simplicity, is increased by one (zero) for 
each wire (gate) of the generated circuit, yielding: 
 

f10 = 2ni × no (1a)
f1 = f1 + 1  
if {bit i of Y} = {bit i of YR} , i = 1, …, f10 

(1b)

f2 = f2 + 1 if gate type = wire (1c)
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where ni and no represent the number of inputs and 
outputs of the circuit. 
   The GA has three stop criteria with the following 
hierarchy: i) based on the matrix size, it is reached a 
possible best solution; ii) the variation of the average 
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fitness function, for 10 consecutive generations, is 
less or equal to 1 (meaning that the algorithm has 
stabilized) and iii) after having attained 10.000 
generations. 
 
 
3   The Memetic Algorithm 
In this work we adopt a MA, that is, an evolutionary 
algorithm that includes a stage of individual 
optimization as part of its search strategy, being the 
individual optimization in the form of a local search. 
MAs are inspired by models of adaptation in natural 
systems that combine evolutionary adaptation of 
populations of individuals with individual learning 
within a lifetime. As it is known, MAs are 
metaheuristics that take advantage of the evolutionary 
operators in determining interesting regions of the 
search space. Moreover, MAs adopt a local search 
that rapidly finds good solutions in a small region of 
the search space. Additionally, MAs are inspired by 
Richard Dawkins’ concept of a meme, which 
represents a unit of cultural evolution that can exhibit 
local refinement [9]. Bearing these ideas in mind, 
figure 3 presents the MA implemented in this work. 
   As figure 4 shows the proposed MA includes a GA 
and a local search algorithm, where the GA 
corresponds to the algorithm implemented in first 
stage of development. 
 

 
 

Fig. 3: The memetic algorithm. 
 

 
 

Fig. 4: GA and a local search algorithm. 
 
   Over the last decade, MAs have relied on the use of 
a variety of different methods as the local 

improvement procedure. Some recent studies on the 
choice of local search method employed have shown 
that this choice significantly affects the efficiency of 
problem searches. 
   The local search method investigates a small area 
around a solution and adopts the best-found solution. 
By other words, the procedure tries to find a fitter 
solution in the neighborhood of the current solution. 
If the algorithm finds a better solution, then the new 
solution replaces the current solution, and the 
neighborhood restarts. Local search methods are 
iterative algorithms that seek to enhance the solution 
by stepwise improvements. The simplest form of 
local search attempts to swap elements in 
combinatorial optimization problems. 
   In our case, it is implemented a gate type local 
search (GTLS) algorithm as shown in figure 5. 
 

 
 

Fig. 5: The Local Search Algorithm. 
 
 
4   Computational Results for the GA 
and the MA Implementations 
This section shows the implementation of four 
different combinational logic circuits, namely, a 2-to-
1 multiplexer, a one-bit full adder, a four-bit parity 
checker and a two-bit multiplier, using the GA and 
the MA algorithms. 
   Due to the stochastic nature of the GAs in order to 
evaluate its performance, for each gate set we 
perform 20 simulations. The best gate set is the one 
that presents the solution with the higher final fitness 
function F requiring the smaller number of 
generations N and the smaller standard deviation S. 
 
4.1 2-to-1 multiplexer 
 
The first case study is a 2-to-1 multiplexer circuit, 
with a truth table with three inputs {S0, I1, I0} and one 
output {O}. The matrix has a size of r × c = 3 × 3 and 
the length of each string representing a circuit (i.e., 
the chromosome length) is CL = 27. Since the 2-to-1 
multiplexer has ni = 3 and no = 1, it results f10 = 8 and 
F ≥ 12. 

GGEENNEETTIICC  AALLGGOORRIITTHHMM  
((GGlloobbaall  sseeaarrcchh  aallggoorriitthhmm    

tthhaatt  ggeenneerraatteess  tthhee  iinniittiiaall  ssoolluuttiioonnss))  
++  

LLOOCCAALL  SSEEAARRCCHH  
((SSoolluuttiioonn  iimmpprroovveemmeenntt  aallggoorriitthhmm  

tthhrroouugghh  sstteeppwwiissee  cchhaannggeess  ooff  tthhee  iinniittiiaall  ssoolluuttiioonnss)) 

GGeenneerraattee  iinniittiiaall  ppooppuullaattiioonn  
EEvvaalluuaattee  tthhee  ppooppuullaattiioonn  
WWhhiillee  tthhee  ssttoopp  ccrriitteerriiaa  nnoott  aatttteennddeedd  

SSeelleeccttiioonn  
CCrroossssoovveerr  
MMuuttaattiioonn  
AAppppllyy  LLooccaall  SSeeaarrcchh  AAllggoorriitthhmm  
EEvvaalluuaattee  nneeww  ppooppuullaattiioonn  

EEnndd  

FFoorr  aallll  ppooppuullaattiioonn  
FFoorr  tthhee  eennttiirree  cchhrroommoossoommee,,  ssuubbssttiittuuttee  tthhee  ggeennee  gate type  
wwiitthh  aa  nneeiigghhbboouurr  

IIff  tthhee  nneeww  ssoolluuttiioonn  hhaass  bbeetttteerr  ffiittnneessss  
NNeeww  ssoolluuttiioonn  rreeppllaacceess  oolldd  ssoolluuttiioonn  

  EEnndd  FFoorr  
EEnndd 
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   Table 2 shows the average number of generation 
Nav, the standard deviation Sav and the average fitness 
function Fav, for each gate set and for the GA and the 
MA algorithms. We can see that, the best case occurs 
for Gset 3 with the MA algorithm, because it leads to 
the smallest Nav and the best Fav. 
 

Table 2 GA and MA results for all circuits 
 

2-to-1 multiplexer 
 Nav Sav Fav 
Gate Set GA MA GA MA GA MA 
Gset 6 27.15 10.15 10.00 3.65 10.25 11.55 
Gset 4 19.75 5.40 4.29 3.23 10.35 11.95 
Gset 3 13.55 3.05 2.98 1.10 10.65 12.00 
Gset 2 12.05 6.55 2.78 3.69 11.15 11.80 

One-bit full adder 
 Nav Sav Fav 

Gate Set GA MA GA MA GA MA 
Gset 6 72.45 15.30 52.98 1.75 18.15 19.00 
Gset 4 53.65 14.00 29.11 0.86 18.35 19.00 
Gset 3 32.40 13.40 10.60 0.50 18.45 19.00 
Gset 2 34.86 17.70 6.44 4.59 18.57 18.30 

Four-bit parity checker 
 Nav Sav Fav 

Gate Set GA MA GA MA GA MA 
Gset 6 32.55 2.50 8.85 0.51 21.70 25.10 
Gset 4 20.40 2.05 5.05 0.22 21.95 25.85 
Gset 3 13.75 2.00 1.80 0.00 22.65 26.00 
Gset 2 7.95 2.05 4.10 0.39 23.95 24.50 

Two-bit multiplier 
 Nav Sav Fav 

Gate Set GA MA GA MA GA MA 
Gset 6 1699 56.10 1713 11.59 69.15 70.15 
Gset 4 1183 61.85 1652 20.05 69.50 70.70 
Gset 3 432 60.05 595 22.85 70.25 71.25 
Gset 2 362 293.05 357 225.32 70.45 69.70 

 
4.2 One-bit full adder 
 
The second case study is a one-bit full adder circuit, 
with a truth table with three inputs {A, B, Cin} and 
two outputs {S, Cout}. In this case, the matrix has a 
size of r × c = 3 × 3, and the length of each string 
representing a circuit (i.e., the chromosome length) is 
CL = 27. Since the one-bit full adder has ni = 3 and 
no = 2, it results f10 = 16 and F ≥ 20. 
   Table 2 shows Nav, the standard deviation Sav and 
Fav, for each gate set and for the GA and MA 
algorithms. We conclude that, once again, the best 
case occurs for Gset 3 and for the MA algorithm. 
 
 

4.3 Four-bit parity checker 
 
The third case study consists on a four-bit parity 
(even) checker circuit, with a truth table having four 
inputs {A3, A2, A1, A0} and one output {P}. The size 
of the matrix is r × c = 4 × 4 and the chromosome 
length is CL = 48. In this case ni = 4 and no = 1, 
resulting f10 = 16 and F ≥ 24. 
   Table 2 shows Nav, the standard deviation Sav and 
Fav, for each gate set, and for the GA and the MA 
algorithms. Once again, we conclude that Gset 3 in 
conjunction with the MA algorithm is the best gate 
set for generating the combinational logic circuit. 
 
4.4 Two-bit multiplier 
 
The fourth case study is a two-bit multiplier. 
Therefore, the truth table has four inputs {A1, A0, B1, 
B0} and four outputs {C3, C2, C1, C0}. The 
corresponding matrix is r × c = 4 × 4 dimensional, the 
chromosome as size CL = 48, and it yields ni = 4 and 
no = 4, leading to f10 = 64 and F ≥ 72. 
   Table 2 shows Nav, the standard deviation Sav and 
Fav, for each gate set for the GA and the MA 
algorithms. The best results are obtained applying the 
MA algorithm but, in this case, Gset 6 is the best in 
terms of Nav being Gset 3 superior in respect to Fav.. 
   Figure 6 depicts the average of the fitness function 
Fav versus the average number of generations to 
achieve the solution Nav, for the GA and the MA 
algorithms, for all gate sets and all circuits under 
analysis. 
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Fig. 6: Average fitness function Fav versus the 

average number of generations Nav to achieve the 
solution for P = 3000. 

 
   The superior performance of the MA algorithm is 
obvious for all gate sets and all circuits, particularly 
in the perspective of the Nav. Moreover, Gset 3 
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demonstrates to be the most efficient gate set. 
 
 
5   Convergence Analysis 
This section addresses an important issue of the 
evolutionary algorithms because in general, due to 
their stochastic nature, the algorithms may present 
convergence problems. In this line of thought, we 
analyze the average number of generations Nav to 
achieve the solution and the standard deviation Sav, 
for different population sizes P. 
   Figure 7 shows Nav versus P for the MA algorithm 
and the four-bit parity checker circuit. In fact, this 
figure illustrates also the case of the other circuits, 
because they present similar type of charts. 
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Fig. 7: Average number of generations Nav to achieve 
the solution versus the population size P, for the MA 
algorithm and for the four-bit parity checker circuit, 

using all gate sets. 
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Fig. 8: Standard deviation of the number of 
generations to achieve the solution Sav versus the 

population size P, for the MA algorithm and the four-
bit parity checker circuit, using all gate sets. 

 
   Figure 8 shows the standard deviation of the 

number of generations to achieve the solution Sav 
versus the population size P, for the MA algorithm 
and the four-bit parity checker circuit for all the gate 
sets. 
   Combining the two charts presented previously, we 
get the plot of Sav versus Nav depicted in figure 9. This 
locus demonstrates the structural behavior of the 
algorithm convergence. It is clear that, ignoring the 
processing time, we obtain the better results (a low 
number of generations to achieve the solution with a 
low standard deviation) the higher the population P. 
Similar conclusions result for the other gate sets and 
rest of the circuits. 
   For comparison it is also included the locus of the 
GA scheme for identical conditions. 
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Fig. 9: Standard deviation of the number of 

generations to achieve the solution Sav versus the 
average number of generations to achieve the solution 

Nav for the MA and the GA algorithms, with Gset 2 
and the four-bit parity checker circuit. 

 
 
6   Scalability Analysis 
Another issue that emerges with the increasing 
number of the circuit inputs and outputs is the 
scalability problem. Since the truth table grows 
exponentially, the computational burden to achieve 
the solution increases dramatically. 
   Figure 10 shows the evolution of Fav versus Nav for 
the parity checker family of circuits, for an increasing 
number of bits. The parity checker family is {2, 3, 4, 
5 and 6 bit}. 
   Analyzing the plots for the parity checker family of 
figure 10 we verify numerically that, after elapsing an 
initial ‘transient’, we have an exponential law given 
by: 
 

ℜ∈= βαα β ,avN
av eF  (2)
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Fig. 10: Fav versus Nav for the parity checker family, 
for the GA and the MA algorithms and for the Gsets 

under evaluation for P = 3000. 
 
   Table 3 presents the coefficients (α, β) that result 
for each gate set and for each of the algorithms. For 
the GA algorithm and with respect to coefficient α 
we can say that Gset 2 is the best one, Gsets 3 and 4 
are similar and that Gset 6 is the less performing. It is 
possible to group Gsets 6, 4 (inferior performance) 
and Gsets 2, 3 (superior performance) in terms of 
coefficient β, that captures the growth characteristics. 
On the other hand, for the MA algorithm, it is 
possible to group gate sets 6, 4, 3 for both 
coefficients while Gset 2 exhibits an inferior 
behavior. 
 

Table 3 Coefficients of equation 2 
 

 GA MA 
Gate Set α β α β 
Gset 6 9.8 0.0214 2 1.06
Gset 4 12.3 0.0257 1.92 1.14
Gset 3 12.2 0.0408 2.33 1.17
Gset 2 21.2 0.0433 8.44 0.47

 
 
7   Conclusions 
In general, most real world problems are too complex 
for any single optimization technique to solve it in 
isolation. The modern trend and philosophy for 
constructing fast, globally convergent algorithms is to 
combine a simple globally convergent algorithm with 
a fast locally convergent heuristic, to form a more 
suitable and faster hybrid.  
   GAs are well known for exploring the solution 
space effectively but are unable to fine-tune the 
search. In order to improve the GAs search 
capabilities, a local search technique is often 

integrated with a GA to form a hybrid called Memetic 
Algorithms. Accordingly, the hybrid MA tends to 
incorporate the exploration capability of GAs with 
the exploitation features of local search, which we 
have confirm in this work. 
   The performed experiments have shown that the 
MA proposed in this paper is highly effective in 
combinational logic circuit design when compared 
with classical GA approaches. Furthermore, the local 
search technique was able to enhance the 
convergence rate of the Evolutionary Algorithm by 
finely tuning the search on the immediate area of the 
landscape considered. 
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