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Abstract: - This paper presents a speed estimation method using neural networks (NN) in a vector controlled 
(VC) induction motor drive. The estimation algorithm is implemented using a Jordan recurrent NN structure 
where training of the NN is done online using back-propagation algorithm. Two back emf models are used in 
order to realize the reference and the adaptive models from which depending upon the speed error back emf 
error is generated which is used for training the NN. Results of real-time digital simulation using RT-Lab show 
good estimation accuracy. This achievement is believed to be an important contribution to sensorless vector 
control of induction motor drive.  
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1  Introduction 
Vector Control (VC) or Field Oriented Control 
(FOC) originated from the works of Blaschke [1] 
and Hasse [2] has become an industry standard for 
controlling induction motors in high performance 
drive applications. Orientation is possible along 
mutual flux, stator flux or the rotor flux; however, 
orientation of the stator current space vector with 
respect to the rotor flux alone gives natural 
decoupling between the torque producing and flux 
producing components of the stator current space 
vector. Control of induction motor using the 
principle of field orientation gives control 
characteristics similar to that of a separately excited 
dc motor. In fact, VC induction motor drive 
outperforms the dc drive because of higher transient 
current capability, increased speed range and lower 
rotor inertia. 
     Shaft mounted sensors in conventional VC drives 
lower the system reliability and require special 
attention to electrical noise in addition to extra 
expenses involved. Moreover, rotational transducers 
cannot be mounted in certain applications, such as 
drives in hostile environments, high-speed drive 
applications etc. Therefore, a lot of researches are 
underway to develop accurate speed estimation 
techniques. With sensorless vector control we have 
the decoupled control structure similar to that of a 
separately excited dc machine, retaining the inherent 
ruggedness of induction motor at the same time. The 

commonly used methods for speed estimation are 
Model Reference Adaptive System (MRAS) [3]-[5], 
Extended Kalman Filter (EKF) [6]-[9], Nonlinear 
Observer [10]-[13] and Neural Networks [14]-[18]. 
It has been shown that using NN in motor modeling 
has the advantages of extremely fast parallel 
computing, immunity from input harmonic ripples, 
and fault tolerance characteristics [19]. Some 
researchers have used NN with offline training [15]-
[17]; however in the online solution, the neural 
network seems to be more robust towards load and 
parameter changes [14],[18]. 
     In this paper we propose a speed estimation 
method using NN in a vector controlled induction 
motor drive. A multilayer neural network with 4 
inputs, one hidden layer consisting of 8 neurons and 
an output is used for the speed estimation. The speed 
at the output of the NN is used for completing the 
feedback loop thus giving rise to a Jordan type 
recurrent NN. The NN is trained online by 
continuously updating the weights using back-
propagation method. The error signal required for 
updating the weights are obtained using MRAS 
based method where two back emf models are used; 
one as the reference and the other as the adaptive 
[5]. The adaptive model is continuously updated 
with the estimated speed signal obtained at the 
output of the NN. Results of real-time digital 
simulation show good estimation accuracy and the 
response of the drive are found to be satisfactory. 
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2  Speed Estimation Using NN 
It has been proved that an MRAS scheme is very 
effective in identifying motor speed [3]. The MRAS 
scheme for speed identification without integrators 
can be express in the stationary α-β frame as given 
below [5]: 
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where sv  and si  are the stator voltage and current 

vectors respectively, ri  and mi  are rotor and 

magnetized current vectors respectively, me  is 
counter back emf vector, Ls , Lr and Lm are stator, 
rotor and mutual inductances respectively, σ is 
leakage coefficient, Rs is stator resistance, Tr is rotor 
circuit time constant and 

rω  is a vector whose 
magnitude ωr is rotor electrical angular velocity. 
     From (1) and (2), me  can be delivered as 
followed: 











+−=

dt
id

LiRve s
ssssm ... σ   (3) 









+−⊗= s

r
m

r
mr

r

m
m i

T
i

T
i

L
L

e 112

ω      (4) 

 
     Defining α , β as stator fixed reference, and 
em=emα+j.emβ , using equation (3) derives the back 
emf for the reference model below: 
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where  p stands for dtd . 
     By using (2) and (4) the back emf for the adaptive 
model can be derived as below: 
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     Fig.1 illustrates the structure of the proposed 
speed  estimator. In  the  Reference Model block  we 

 
Fig.1: Structure of speed estimator using NN 

 
are using equation (5) to find out the back emf 
voltage independent of the motor speed (ωr) as in 
Adaptive Model block the current and the estimated 
speed (obtained from our ANN) are used for that. 
The error between these two blocks then is used to 
adjust the weights of the neurons in the speed 
estimator. The bigger error between the two back 
emf model outputs, the more correction in the 
weights is exerted. 
     The structure of the ANN Speed Estimator is the 
well known structure of Jordan recurrent network 
[20] which   is shown in Fig.2. The inputs are the 
voltage and current of the motor in the stationary α-
β frame (four inputs: Vsα , Vsβ , isα , isβ) plus the 
output (estimated speed) of the previous step which 
is used as the extra input. 
     The adjustment of the weights in hidden layer is 
achieved by using the error of back emf. Note that 
though the back emf is a vector, but as using the 
amplitude of it conduces to acceptable result, it’s 
used in order to simplify the calculation. Back-
propagation method is used in this way, so the 
weight correction for the i → j connection is 
calculated from this equation [21]: 
 

 
Fig.2: Structure of NN 

Output

Hidden 
Layer 

Context

Inputs 

 + 
 
 - 

Reference 
Model 

Adaptive 
Model

ANN 
Speed 

Estimator 

1−Z

sV
r

si
r

mê  
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     Or by naming the output for neuron i as oi it 
could be written as bellow [13]: 
 

ijjiji okwkw ηδα +−∆=∆ )1()(  (8) 
 
     To start the training the weights are initially 
randomize from 0.5 (these two recent parameters are 
obtained by try and error in several tests to have the 
best result. Theoretically they can take some amount 
between 0 and 1 with no exact formula [22]).  After 
that, in each step the estimated speed is used in 
adaptive model and the error between two models 
would replace to repeat the calculation. So, the 
training is completely online (real-time) with no 
necessary pre-calculation. 
 
 
3  Real-Time Simulation Results 
The parameters of the induction motor used in this 
work are given below in Table 1. Real-Time digital 
simulation is carried out using RT-Lab in order to 
verify the accuracy of the estimation algorithm in 
addition to observing the response of the sensorless 
VC drive system. The block diagram of the 
sensorless Indirect FOC induction motor drive, 
incorporating   the  proposed   NN  speed  estimation  
 
 
 
 
 
 
 
 

Table 1 : Induction Motor Parameters 
 

Related Power Pr 500 W 

Line-Line Voltage Vr 220 V 

Related Torque T 3.41 N m  

Number of Poles P 4 

Stator Resistance Rs 4.495 Ω 

Rotor Resistance Rr 5.365 Ω 

Stator Indoctunce Ls 165 mH 

Rotor Inductance Lr 162 mH 

Magnetisting Inductance Lm 149 mH 

Rotor Moment of Inertia J .00095 Kg 2m  
 
algorithm is shown in Fig.3. 
     Real-time simulation technique is widely used 
nowadays by high-tech industries, particularly 
automotive and aeronautics industries (aircraft flight 
control, satellite control, etc), as the main tool for 
rapid prototyping of complex engineering systems in 
a cost-effective and secure manner, while reducing 
the time-to-market. RT-Lab uses Simulink as a 
front-end interface for editing graphic models in 
block-diagram format which are afterward used by 
this real-time plate-form to generate necessary C-
Codes for real-time simulations on parallel 
processors. 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig.3: Block diagram of sensorless Indirect FOC Induction Motor Drive using NN 
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     Simulation is carried out for different operating 
conditions of the motor drive to study the 
performance of the NN speed estimator. First, the 
machine is operated at no load. Fig.4 shows the 
speed, estimated speed and the speed estimation 
error for this operation. At 0.5 s the machine is 
accelerated to 150 rad/s and then, decelerated in 
steps to 120 rad/s, 50rad/s and 10rad/s at 2 s, 3 s and 
4 s respectively. 
     There is an error of less than 1% in the estimated 
speed in the steady states, but trying to decrease it 
(by changing the training parameters) causes some 
instability in the output. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Fig.4: No-Load Speed Estimation 
 

     Next, the performance of the estimator while the 
machine is loaded and unloaded is studied. The 
machine is accelerated to 150 rad/s at 0.5 s and full 
load is applied at 2 s and then, the load is fully 
removed at 3.5 s. The speed estimated speed and the 
speed estimation error are shown in Fig.5. 
     It is observed that the estimated speed tracks the 
actual speed very well with a small error of less than 
1% in steady states. Smaller changes in the load 
perform even a better result for sure. 
     Finally, the performance of the fully loaded drive 
system at various operating speeds is studied. The 
fully loaded motor is started at 0.5 s to 150 rad/s and 
after the speed gets stable it is decelerated in steps to 
75 rad/s at 2 s and finally to 10 rad/s at 3.5 s. The 
actual speed, estimated speed and the speed 
estimation error are shown in Fig. 6. 

     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig.5: Speed Estimation for Load Changes 
 
     The accuracy of estimation was found to be very 
good with a small error of less than 1% under steady 
state conditions. 
    It is found that the NN speed estimator has good 
accuracies under both transient and steady state 
conditions, at high and low speeds and at no load 
and loaded conditions of the speed sensorless VC 
induction motor drive system. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig.6: Full-Loaded Motor Speed Estimation 
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4  CONCLUSION 
In this paper, we have presented a speed estimation 
method using neural networks (NN) in a vector 
controlled (VC) induction motor drive. The 
proposed method uses a Jordan recurrent NN 
structure where training of the NN is done online 
using back-propagation algorithm. The method uses 
the back emf based MRAS where reference model is 
independent of speed and the adaptive model needs 
speed information which it obtains from the NN 
estimator. 
     The flux based MRAS requires pure integration 
of sensed variables which leads to problems with 
initial conditions and drift. To avoid these problems, 
the pure integrator is replaced with a high gain low-
pass filter which causes the instability of 
identification at low speed, which results to weak 
performance. As only differentiators exist in the 
used scheme, system has a very good performance 
even in low speeds as long as the stator resistance is 
known. 
     Real-time digital simulation results show that the 
method is capable of accurate estimation under no 
load and loaded conditions of the drive, at high or 
low speeds of operation, and in both steady state and 
transient conditions. This achievement is considered 
to be an important contribution to sensorless 
operation of induction motor drives. 
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