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Abstract - For monotone generated points on the plane we present the Dynamic Monotone Priority Search Tree 
(DMoPST) in main / external memory with O(1) update time / O(1) block transfers in worst-case. The external 
version of the structure above promises efficient applications in transaction time Databases systems. 
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1 Overview  

For monotone or periodical monotone generation 
of points in the plane we present a new dynamic 
version of Priority Search Tree, the Dynamic 
Monotone Priority Search Tree (DMoPST) in main / 
external memory with O(1) time / O(1) block 
transfers in worst-case for update operations. Even if 
the dynamic generation of points constitutes a special 
case it is the first time a dynamic version of priority 
search tree is being presented with optimal update 
time. The best previous results in main / external 
memory were presented in  [10] / [3] and require 
O(logn/loglogn) time / O(logBn) I/O’s respectively 
for all operations (three-sided lookup queries, 
insertions, deletions).  
 
1.1 The Classic Priority Search Tree 

We will briefly review the priority search tree of 
McCreight [6]. Let S be a set of n points on the plane. 
We want to store them in a data structure so that the 
points that lie inside a half infinite strip of the form 
[−∞ , b] x (−∞ , c] can be found efficiently.  

The priority search tree is a binary search tree of 
depth O(logn) for the x-coordinates of the points. The 
root of the tree contains the point p with smallest y-
coordinate. The left (resp. right) subtree is 
recursively defined for the set of points in S-{p} with 
x-coordinates in the left (resp. right) subtree. From 
this definition it is easily seen that a point is stored in 
a node on the search path from the root to the leaf 
containing its x-coordinate. 

To answer a range query with a quadrant [−∞ , 
b] x [−∞ , c] we find the O(logn) nodes in the 
search path Pb for b. Let Lb be the left children of 
these nodes, that don't lie on the path. For the points 

2005 WSEAS Int. Conf. on REMOTE SENSING, Venice, Italy, November 2-4, 2005 (pp121-125)



of the nodes of Pb U Lb we can determine in O(logn) 
time which lie in the query-range. Then for each node 
of Lb whose point is inside the range we visit its two 
children and check whether their points lie in the 
range. We continue recursively as long as we find 
points in the query-range. 

For the correctness of the query algorithm first 
observe that nodes on the right of the search path 
have points with x-coordinate larger than b and 
therefore lie outside the query-range. The points of Pb 
may have x-coordinate larger than b or they may 
have y-coordinate larger than c. If any of these is true 
then they are not reported. The nodes of Lb and their 
descendants have points with x-coordinate smaller 
than b so only their y-coordinates need to be tested. 
For the nodes of Lb whose points lie inside the query-
range we need to look further at their descendants. 
The search proceeds as long as we find points inside 
the query-range. If a point of a node u does not lie 
inside the query-range then this point has y-
coordinate larger than c. Therefore all points in the 
subtree rooted at u lie outside the query-range and 
need not to be searched. From the above discussion 
we can easily bound the query time by O(logn+k), 
since we need O(logn) time to visit the nodes in Pb U 
Lb and O(k) time for searching in their subtrees.  
 
1.2 The Fusion Priority Search Tree 

The main advantage of the fusion technique 
([10]) is that we can decide in time O(1) in which 
subtree to continue the searching by compressing the 
k-keys of every B-tree node using w - bit words. 

Willard used as a skeleton structure a B-tree 
whose internal nodes have arity between B/8 and B, 
with the exception of the root that has arity between 2 
and B, and whose leaves store the data and all have 
the same depth. Each node v stores information about 
the y_max value of the set of points stored in Tv, it 
also stores compressed information into a q-heap 
([10]) about the y_max values of the respective sons 
of v, in order to decide in O(1) time to which  of 
them  he must continue a further searching. 

He also proved that, it is possible to devise an 
insertion and deletion algorithm for this tree that runs 
in worst-case time O(h), where h=O(logn/loglogn). 
Quadrant and Three-sided Queries can be answered 

in O(h+k) worst-case time where k the size of the 
answer. 
 
 
2 The Main Memory DMoPST data 
structure 

 We consider the special case of monotone or 
periodically monotone generated points in the plane. 
 
Definition 1:  A dynamic set of n points 

( ){ }niiyixS ≤≤= 1,, , is monotone iff jiji ≤∀ :, , 

ij xx > and ij yy >  (increasing monotone set) or 

ij yy <  (decreasing monotone set). 

Definition 2: A set of n points ( ){ }niiyixS ≤≤= 1,, , 

is periodically and uniformly monotone iff we can 
divide the plane into space slabs of approximately 
equal size each of which is monotone according to 
definition 1. 

In order to achieve for the above dynamic sets a 
special version of a priority search tree with linear 
space and O(1) update time we use the bucketing 
technique. The essence of the bucketing method is to 
get the best features of the two different structures by 
combining them into a two-level structure. The data 
to be stored is partitioned into buckets Bi, 1≤i≤k, (see 
Fig. 1.a) and the chosen data structure for the 
representation of each individual bucket is different 
from the representation of the top-level data 
structure, representing the O(n/k) collection of 
buckets  (for similar applications of this data 
structuring paradigm see also [7,5,9]). The points of 
the Fig. 1.b are generated in a periodical monotone 
way. Let ti, 1≤i≤k, the ith time period and Si the 
corresponding space slab the points of which are 
going to be stored in the 2-level data structure Ti. 
During the time the only updateable data structure is 
the last one (see the Tj 2-level structure of Fig. 1.b). 
For every ti, i≥1, we execute a global reconstruction 
of a new static priority search tree STi ([2,11]) for 
the points generated between the time periods ti-1 and 
ti. Considering the same size of each slab due to 
uniform distribution we can spread out the linear 
work spent during a global reconstruction on the next  
 

2005 WSEAS Int. Conf. on REMOTE SENSING, Venice, Italy, November 2-4, 2005 (pp121-125)



 
 
 

Fig 1: Monotone and periodically monotone trajectories of points

updates between ti and ti+1. The O(1) worst case 
update cost for the global reconstruction follows. 

In the Figure 1 below it is depicted (a) a dynamic 
set of n monotone generated points and the 
corresponding 2-level data structure (b) a dynamic 
set of n periodically monotone generated points, 
uniformly distributed between time periods, and the 
corresponding data structures. In each time period ti 
the respective 2-level structure Ti is replaced by the 
static structure STi-1. In this way it’s obvious that the 
only dynamic or updateable data structure is the last 
one. Due to the uniform distribution among time 
periods we can also use a dynamic perfect hash table 
in order to lookup in O(1) time the respective set of 
points and as a consequence the corresponding data 
structure for further searching. 

Particularly we use the dynamic perfect hashing 
strategy of [1] : It’s about a randomized algorithm for 
the dynamic dictionary problem that takes O(1) 
worst-case time for finding the roots of the 
corresponding (static or dynamic) data structures (see 
Fig.1.b)  and O(1) amortized expected time for 

insertions and deletions. It also uses space 
proportional to the size of the set stored.  
We study the two-follow cases: 
 
 
a) The top-level structure is the classic priority 
search tree ([6]) 
 
a.1) Update time: We will show that making the 
buckets Bi, 1≤i≤k, have size O(logn), (k=O(n/logn)) 
and using as the top-level data structure the Priority 
Search tree of [4], yields a simpler algorithm.  

In addition to the time required to split/fuse 
buckets, a bucket-rebalancing step may require 
O(logn) worst-case time to insert/delete a bucket 
reprentative to/from the top-level tree. The top-level 
tree is the Priority Search Tree that requires O(logn) 
worst - case update time. Since the total work to 
rebalance a bucket is O(logn), we can perform it with 
O(1) work per update spread over the next O(logn) 
updates. In other words, if we can permit every 
bucket to be of size Θ(log n̂ ), where n̂  the number of 
current elements, we can guarantee that between 

2005 WSEAS Int. Conf. on REMOTE SENSING, Venice, Italy, November 2-4, 2005 (pp121-125)



rebalancing operation performed in the top-level tree 
there is no possibility for any other such operation to 
occur and consequently the incremental spread of 
work is possible.  

In the case of Fig. 9.b we must spent an extra 
update time overhead for updating the Dynamic 
Perfect Hash Table, that is a O(1) expected 
amortized time cost. 
 
a.2) Three-sided Lookup Queries: 
a.2.1) Monotone Generated points  (Fig. 1.a)  

Let the [a,b]x(-∞,c] query of Fig.1. The required 
time is O(log(n/logn)+k1)=O(logn+k1) for the binary-
searching of k1 bucket’s representatives (these 
representatives belong to the answer) in the top-level 
Priority Search Tree ([4]) and O(k2) for the 
sequential searching in the responding buckets until 
we reach points with y>c (remember that we gain the 
benefit of y and x ordering simultaneously). So, the 
total required time is O(logn+k). 
a.2.2) Periodically Monotone Generated points  
(Fig. 1.b)   

The query splits into the follow subqueries (see 
Fig.1.b): [a,b]x(-∞,c]= [a,S2]x(-∞,c]+…+  [a,Sj-1]x(-
∞,c] + [Sj ,b]x(-∞,c]. All except the last one are 
queries in the appropriate consecutive ST2,…,STj-1 
static structures. The last one is a query in the 
dynamic Tj structure. So, we pay an extra O(1) 
worst-case lookup cost in the Dynamic Perfect 
Hashing Table in order to find the appropriate static 
structure and O(ki) cost (ki<<k and 2≤i≤j-1) for each 
of the ST2,…,STj-1 static structures respectively in 

order to find totally  ∑
−

=

1

2

j

i
ik  points that satisfy the 

query. It remains to query the last dynamic structure. 
Therefore the last subquery requires O(logC+kj) 
time, where C the size of each slab due to the 

uniform distribution  and  kj + ∑
−

=

1

2

j

i
ik =k the total size 

of the answer. So, in this case the total required time 
is O(logC+k). 
 
b) The top-level structure is the Fusion priority 
search tree ([10]) 
 
b.1) Update time: Now we make buckets of size 
O(logn/loglogn) and the O(1) update time follows.  
In the case of Fig. 9.b we must spent an extra O(1) 
expected amortized time cost. 

b.2) Three-sided Query:  
b.2.1) Monotone Generated points  (Fig.1.a)  

Let the [a,b]x(-∞,c]query of the scheme above 
The required O(logn/loglogn+k) time  follows while 
we process the query in the same manner as in a.2.1 
case. 
b.2.2) Periodically Monotone Generated points  
(Fig.1.b)   

The required O(logC/loglogC+k) time follows 
while we process the query in the same manner as in 
a.2.2 case. 

We retain the buckets in the appropriate size 
using the global rebuilding ([6]) technique. We will 
use two structures: OLD-MAIN and MAIN. 
Normally only MAIN exists. When the number of 
transactions on MAIN exceeds half its initial size, 
MAIN is made into OLD-MAIN and a construction 
is initiated to build a new (i.e., rebalanced) MAIN 
from it. Meanwhile insertions, deletions and queries 
continue on OLD-MAIN, until the new MAIN under 
construction can take over. Assuming there were n0 
points when the construction of a new MAIN begun, 
it was shown that the new structure can take over 
after at most (1/3)n0 transactions. In the sequel, a 
transaction will always be an insertion or a deletion. 
The data structure described above is complicated in 
the sense that it uses bucketing combined with the 
global rebuilding method. We can avoid the global 
rebuilding using the algorithmic techniques of pebble 
games ([7]). 
Remark: In the case of Monotone Generated points, 
the top-level structure is a min_priority search tree 
that means the representative is always the first 
element  (point) of each bucket and this one with the 
minimum y_coordinate is stored in the root. 
In the case of Periodically Monotone Generated 
points, we store the points of increasing monotone 
periods into a number of min_priority search trees 
and the points of decreasing monotone periods into a 
number of max_priority search trees. The last one 
structure stores the representatives which are always 
the last elements  (points) of its buckets and the 
representative with the maximum y_coordinate is 
always stored in the root. 
 
3. The DMoPST external data 
structure: A first look. 

A first look proposes again a 2-level data 
structure. That means the data to be stored is 
partitioned into buckets of  O(logBN) points and the 
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choosen as a top-level data structure for 
representating each individual bucket is the external 
priority search tree of  [3]. Since the total work to 
rebalance a bucket after an insertion takes O(logBN) 
I/Os, we can perform it with O(1) work per update 
spread over the next O(logBN)  updates. A second 
more deeply look discovers some dificulties. In [3] 
the key idea is used to obtain O(logBN) I/Os in worst 
case when an insertion occurred  is to complete the 
rebuilding phase performing a spliting on each node 
of the search path using O(1) I/Os. The split can be 
finalized using O(1) I/Os by constructing 
incrementally the Y-sets Y(u’) and Y(u’’) and the 
query structures Qu’ and Qu’’ of the two new nodes u’ 
and u’’ that will be created by the split of node u. 
That means, we must determine the points to promote 
for Y(u’) and Y(u’’) before forming u’ and u’’, so, 
the data structure will not be a valid external priority 
search tree and queries will not be performed in the 
optimal number of I/Os.  
 
4. Conclusion 

In this work we have focused on special cases of 
2-D range searching constructing for the first time a 
new dynamic priority search tree with optimal update 
time. Our next step for future continuation of this 
work is the externalization of the DMoPST structure 
which can promise more efficient applications in 
transaction time Databases systems ([8]).  
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