
2-D Monotone spatial indexing scheme with optimal update time

L. DROSSOS1, S. SIOUTAS2, K. TSICHLAS2 and K. IOANNOU3

1 Technological Institute of Messolongi,
Department of Applied Informatics in Administration and Economics

Technological Institute Campus, 30200, Messolongi
GREECE

2 Computer Engineering and Informatics department
University of Patras

Building B, University Campus, 26500, Rion, Patras
GREECE

3 Wireless Telecommunication Laboratory, Department of Electrical and Computer Engineering,
University of Patras,
Rion 26500, Patras

GREECE

Abstract - For monotone generated points on the plane we present the Dynamic Monotone Priority Search Tree
(DMoPST) in main / external memory with O(1) update time / O(1) block transfers in worst-case. The external
version of the structure above promises efficient applications in transaction time Databases systems.

Key-Words: -Databases, Data structures

1 Overview

For monotone or periodical monotone generation
of points in the plane we present a new dynamic
version of Priority Search Tree, the Dynamic
Monotone Priority Search Tree (DMoPST) in main /
external memory with O(1) time / O(1) block
transfers in worst-case for update operations. Even if
the dynamic generation of points constitutes a special
case it is the first time a dynamic version of priority
search tree is being presented with optimal update
time. The best previous results in main / external
memory were presented in [10] / [3] and require
O(logn/loglogn) time / O(logBn) I/O’s respectively
for all operations (three-sided lookup queries,
insertions, deletions).

1.1 The Classic Priority Search Tree

We will briefly review the priority search tree of
McCreight [6]. Let S be a set of n points on the plane.
We want to store them in a data structure so that the
points that lie inside a half infinite strip of the form
[−∞ , b] x (−∞ , c] can be found efficiently.

The priority search tree is a binary search tree of
depth O(logn) for the x-coordinates of the points. The
root of the tree contains the point p with smallest y-
coordinate. The left (resp. right) subtree is
recursively defined for the set of points in S-{p} with
x-coordinates in the left (resp. right) subtree. From
this definition it is easily seen that a point is stored in
a node on the search path from the root to the leaf
containing its x-coordinate.

To answer a range query with a quadrant [−∞ ,
b] x [−∞ , c] we find the O(logn) nodes in the
search path Pb for b. Let Lb be the left children of
these nodes, that don't lie on the path. For the points

2005 WSEAS Int. Conf. on REMOTE SENSING, Venice, Italy, November 2-4, 2005 (pp121-125)

of the nodes of Pb U Lb we can determine in O(logn)
time which lie in the query-range. Then for each node
of Lb whose point is inside the range we visit its two
children and check whether their points lie in the
range. We continue recursively as long as we find
points in the query-range.

For the correctness of the query algorithm first
observe that nodes on the right of the search path
have points with x-coordinate larger than b and
therefore lie outside the query-range. The points of Pb
may have x-coordinate larger than b or they may
have y-coordinate larger than c. If any of these is true
then they are not reported. The nodes of Lb and their
descendants have points with x-coordinate smaller
than b so only their y-coordinates need to be tested.
For the nodes of Lb whose points lie inside the query-
range we need to look further at their descendants.
The search proceeds as long as we find points inside
the query-range. If a point of a node u does not lie
inside the query-range then this point has y-
coordinate larger than c. Therefore all points in the
subtree rooted at u lie outside the query-range and
need not to be searched. From the above discussion
we can easily bound the query time by O(logn+k),
since we need O(logn) time to visit the nodes in Pb U
Lb and O(k) time for searching in their subtrees.

1.2 The Fusion Priority Search Tree

The main advantage of the fusion technique
([10]) is that we can decide in time O(1) in which
subtree to continue the searching by compressing the
k-keys of every B-tree node using w - bit words.

Willard used as a skeleton structure a B-tree
whose internal nodes have arity between B/8 and B,
with the exception of the root that has arity between 2
and B, and whose leaves store the data and all have
the same depth. Each node v stores information about
the y_max value of the set of points stored in Tv, it
also stores compressed information into a q-heap
([10]) about the y_max values of the respective sons
of v, in order to decide in O(1) time to which of
them he must continue a further searching.

He also proved that, it is possible to devise an
insertion and deletion algorithm for this tree that runs
in worst-case time O(h), where h=O(logn/loglogn).
Quadrant and Three-sided Queries can be answered

in O(h+k) worst-case time where k the size of the
answer.

2 The Main Memory DMoPST data
structure

 We consider the special case of monotone or
periodically monotone generated points in the plane.

Definition 1: A dynamic set of n points

(){ }niiyixS ≤≤= 1,, , is monotone iff jiji ≤∀ :, ,

ij xx > and ij yy > (increasing monotone set) or

ij yy < (decreasing monotone set).

Definition 2: A set of n points (){ }niiyixS ≤≤= 1,, ,

is periodically and uniformly monotone iff we can
divide the plane into space slabs of approximately
equal size each of which is monotone according to
definition 1.

In order to achieve for the above dynamic sets a
special version of a priority search tree with linear
space and O(1) update time we use the bucketing
technique. The essence of the bucketing method is to
get the best features of the two different structures by
combining them into a two-level structure. The data
to be stored is partitioned into buckets Bi, 1≤i≤k, (see
Fig. 1.a) and the chosen data structure for the
representation of each individual bucket is different
from the representation of the top-level data
structure, representing the O(n/k) collection of
buckets (for similar applications of this data
structuring paradigm see also [7,5,9]). The points of
the Fig. 1.b are generated in a periodical monotone
way. Let ti, 1≤i≤k, the ith time period and Si the
corresponding space slab the points of which are
going to be stored in the 2-level data structure Ti.
During the time the only updateable data structure is
the last one (see the Tj 2-level structure of Fig. 1.b).
For every ti, i≥1, we execute a global reconstruction
of a new static priority search tree STi ([2,11]) for
the points generated between the time periods ti-1 and
ti. Considering the same size of each slab due to
uniform distribution we can spread out the linear
work spent during a global reconstruction on the next

2005 WSEAS Int. Conf. on REMOTE SENSING, Venice, Italy, November 2-4, 2005 (pp121-125)

Fig 1: Monotone and periodically monotone trajectories of points

updates between ti and ti+1. The O(1) worst case
update cost for the global reconstruction follows.

In the Figure 1 below it is depicted (a) a dynamic
set of n monotone generated points and the
corresponding 2-level data structure (b) a dynamic
set of n periodically monotone generated points,
uniformly distributed between time periods, and the
corresponding data structures. In each time period ti
the respective 2-level structure Ti is replaced by the
static structure STi-1. In this way it’s obvious that the
only dynamic or updateable data structure is the last
one. Due to the uniform distribution among time
periods we can also use a dynamic perfect hash table
in order to lookup in O(1) time the respective set of
points and as a consequence the corresponding data
structure for further searching.

Particularly we use the dynamic perfect hashing
strategy of [1] : It’s about a randomized algorithm for
the dynamic dictionary problem that takes O(1)
worst-case time for finding the roots of the
corresponding (static or dynamic) data structures (see
Fig.1.b) and O(1) amortized expected time for

insertions and deletions. It also uses space
proportional to the size of the set stored.
We study the two-follow cases:

a) The top-level structure is the classic priority
search tree ([6])

a.1) Update time: We will show that making the
buckets Bi, 1≤i≤k, have size O(logn), (k=O(n/logn))
and using as the top-level data structure the Priority
Search tree of [4], yields a simpler algorithm.

In addition to the time required to split/fuse
buckets, a bucket-rebalancing step may require
O(logn) worst-case time to insert/delete a bucket
reprentative to/from the top-level tree. The top-level
tree is the Priority Search Tree that requires O(logn)
worst - case update time. Since the total work to
rebalance a bucket is O(logn), we can perform it with
O(1) work per update spread over the next O(logn)
updates. In other words, if we can permit every
bucket to be of size Θ(log n̂), where n̂ the number of
current elements, we can guarantee that between

2005 WSEAS Int. Conf. on REMOTE SENSING, Venice, Italy, November 2-4, 2005 (pp121-125)

rebalancing operation performed in the top-level tree
there is no possibility for any other such operation to
occur and consequently the incremental spread of
work is possible.

In the case of Fig. 9.b we must spent an extra
update time overhead for updating the Dynamic
Perfect Hash Table, that is a O(1) expected
amortized time cost.

a.2) Three-sided Lookup Queries:
a.2.1) Monotone Generated points (Fig. 1.a)

Let the [a,b]x(-∞,c] query of Fig.1. The required
time is O(log(n/logn)+k1)=O(logn+k1) for the binary-
searching of k1 bucket’s representatives (these
representatives belong to the answer) in the top-level
Priority Search Tree ([4]) and O(k2) for the
sequential searching in the responding buckets until
we reach points with y>c (remember that we gain the
benefit of y and x ordering simultaneously). So, the
total required time is O(logn+k).
a.2.2) Periodically Monotone Generated points
(Fig. 1.b)

The query splits into the follow subqueries (see
Fig.1.b): [a,b]x(-∞,c]= [a,S2]x(-∞,c]+…+ [a,Sj-1]x(-
∞,c] + [Sj ,b]x(-∞,c]. All except the last one are
queries in the appropriate consecutive ST2,…,STj-1
static structures. The last one is a query in the
dynamic Tj structure. So, we pay an extra O(1)
worst-case lookup cost in the Dynamic Perfect
Hashing Table in order to find the appropriate static
structure and O(ki) cost (ki<<k and 2≤i≤j-1) for each
of the ST2,…,STj-1 static structures respectively in

order to find totally ∑
−

=

1

2

j

i
ik points that satisfy the

query. It remains to query the last dynamic structure.
Therefore the last subquery requires O(logC+kj)
time, where C the size of each slab due to the

uniform distribution and kj + ∑
−

=

1

2

j

i
ik =k the total size

of the answer. So, in this case the total required time
is O(logC+k).

b) The top-level structure is the Fusion priority
search tree ([10])

b.1) Update time: Now we make buckets of size
O(logn/loglogn) and the O(1) update time follows.
In the case of Fig. 9.b we must spent an extra O(1)
expected amortized time cost.

b.2) Three-sided Query:
b.2.1) Monotone Generated points (Fig.1.a)

Let the [a,b]x(-∞,c]query of the scheme above
The required O(logn/loglogn+k) time follows while
we process the query in the same manner as in a.2.1
case.
b.2.2) Periodically Monotone Generated points
(Fig.1.b)

The required O(logC/loglogC+k) time follows
while we process the query in the same manner as in
a.2.2 case.

We retain the buckets in the appropriate size
using the global rebuilding ([6]) technique. We will
use two structures: OLD-MAIN and MAIN.
Normally only MAIN exists. When the number of
transactions on MAIN exceeds half its initial size,
MAIN is made into OLD-MAIN and a construction
is initiated to build a new (i.e., rebalanced) MAIN
from it. Meanwhile insertions, deletions and queries
continue on OLD-MAIN, until the new MAIN under
construction can take over. Assuming there were n0
points when the construction of a new MAIN begun,
it was shown that the new structure can take over
after at most (1/3)n0 transactions. In the sequel, a
transaction will always be an insertion or a deletion.
The data structure described above is complicated in
the sense that it uses bucketing combined with the
global rebuilding method. We can avoid the global
rebuilding using the algorithmic techniques of pebble
games ([7]).
Remark: In the case of Monotone Generated points,
the top-level structure is a min_priority search tree
that means the representative is always the first
element (point) of each bucket and this one with the
minimum y_coordinate is stored in the root.
In the case of Periodically Monotone Generated
points, we store the points of increasing monotone
periods into a number of min_priority search trees
and the points of decreasing monotone periods into a
number of max_priority search trees. The last one
structure stores the representatives which are always
the last elements (points) of its buckets and the
representative with the maximum y_coordinate is
always stored in the root.

3. The DMoPST external data
structure: A first look.

A first look proposes again a 2-level data
structure. That means the data to be stored is
partitioned into buckets of O(logBN) points and the

2005 WSEAS Int. Conf. on REMOTE SENSING, Venice, Italy, November 2-4, 2005 (pp121-125)

choosen as a top-level data structure for
representating each individual bucket is the external
priority search tree of [3]. Since the total work to
rebalance a bucket after an insertion takes O(logBN)
I/Os, we can perform it with O(1) work per update
spread over the next O(logBN) updates. A second
more deeply look discovers some dificulties. In [3]
the key idea is used to obtain O(logBN) I/Os in worst
case when an insertion occurred is to complete the
rebuilding phase performing a spliting on each node
of the search path using O(1) I/Os. The split can be
finalized using O(1) I/Os by constructing
incrementally the Y-sets Y(u’) and Y(u’’) and the
query structures Qu’ and Qu’’ of the two new nodes u’
and u’’ that will be created by the split of node u.
That means, we must determine the points to promote
for Y(u’) and Y(u’’) before forming u’ and u’’, so,
the data structure will not be a valid external priority
search tree and queries will not be performed in the
optimal number of I/Os.

4. Conclusion

In this work we have focused on special cases of
2-D range searching constructing for the first time a
new dynamic priority search tree with optimal update
time. Our next step for future continuation of this
work is the externalization of the DMoPST structure
which can promise more efficient applications in
transaction time Databases systems ([8]).

Acknowledgements
The authors would like to thank the Operational
Program for Educational and Vocational
Training II (EPEAEK II) and particularly the
Program PYTHAGORAS, for funding the above
work.

REFERENCES

 [1] Martin Dietzfelbinger, Anna Karlin, Kurt
Mehlhorn, Friedhelm Meyer Auf Der Heide, Hans
Rohnert, and Robert E. Tarjan, Dynamic Perfect
Hashing: Upper and Lower Bounds., SIAM J.
Comput. Volume 23, Number 4 pp. 738-761
 [2] H. N. Gabow, J. L. Bentley, and R. E. Tarjan,
Scaling and related techniques for geometry
problems, in Proceedings, l6th Annual ACM Symp.
on Theory of Computing, 1984, pp. 135-143.

[3] L.Arge, V.Samoladas, J.S.Vitter, "On two-
Dimensional Indexability and Optimal Range
Indexing", ACM-PODS ‘99.
 [4] E. M. McCreight, Priority search trees, SIAM J.
Comput. 14 (1985), pp. 257-276.
[5] M. Overmars, A O(1) average time update
scheme for balanced binary search trees, Bulletin of
the EATCS, 18:27-29, 1982.
[6] M. Overmars and Jan van Leeuwen, Worst
case optimal insertion and deletion methods for
decomposable searching problems, Information
Processing Letters, 12:168-173, 1981.
[7] Raman, R. Eliminating Amortization: On Data
Structures with Guaranteed Response Time. PhD
Thesis, University of Rochester, New York, 1992.
Computer Science Dept. U. Rochester, Technical
Report TR-439.
[8] B. Salzberg and V. Tsotras, Comparison of
Access Methods for Time-Evolving Data, ACM
Computing Surveys, Vol. 31, No. 2, June 1999.
 [9] Tsakalidis, A. Maintaining order in a
generalized linked list, ACTA Informatica 21 (1984)
[10] Willard, D., “Applications of the Fusion Tree
Method to Computational Geometry and Searching”,
ACM-SIAM Symposium on Discrete Algorithms,
1992.
[11] N. Kitsios, Ch. Makris, S. Sioutas, J. Tsaknakis
and B. Vassiliadis, Geometric Retrieval for Grid
Points in RAM model, Journal of Universal
Computer Science (J.UCS), Springer, (to appear).

2005 WSEAS Int. Conf. on REMOTE SENSING, Venice, Italy, November 2-4, 2005 (pp121-125)

