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Abstract:- The works of Bhatt, Khan, Jaju and Bhatt, Owen, Jaju, which deal with two prey species
living in two different habitats with one predator specie, which is allowed to switch towards the
most abundant prey specie, are extended by allowing the predators to attack the two prey species
in two different ways and allowing harvesting of the prey species to be different for each specie
and different from the predator-prey interactions. The stability of non-zero equilibrium states is
examined and conditions for stability are obtained. Using the conversion rate of prey to predator
as a bifurcation parameter, conditions for a bifurcation to occur are obtained. A Hopf bifurcation
theorem is also presented. Six hypothetical systems are considered and corresponding bifurcation
points determined. Graphic results for only one such system are displayed.
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1 Introduction

In predator-prey systems it is important to have
a good functional representation of the inter-
action between the predators and preys and
also if harvesting of preys, which is itself a
predator-prey interaction is to take place, we
need a representation of that interaction as
well.
In order to obtain an interaction function some-

times it is good to try to get a general form of
the function, together with any general condi-
tions it should satisfy, then construct specific
functions, using elementary functions, which
satisfy the conditions. We shall use this as
our basic guide for the interactions. As base
models for the predator-prey systems we use
the models of Bhatt, Khan, Jaju [1] and Bhatt,
Owen, Jaju [2]. Ref.[1] considers systems of
two preys living in two different habitats with
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one predator specie which is allowed to switch
towards the most abundant prey specie. Ref.[2]
extends [1] by including general predator-prey
interactions where the predator interacts in the
same way with both preys. That is, the preda-
tory rates have the same functional form.

The object of the present work is to ex-
tend the above works in the sense that havest-
ing of the preys is introduced whereby the two
prey species can be harvested in different ways
and the predators may also attack each prey
specie in a different way. We do not apply
any specific interaction functions to any actual
systems, rather, we consider all interactions as
general functions and determine the equilib-
rium states, their stability conditions and Hopf
bifurcation points using the above works as our
base models. A Hopf bifurcation theorem is
also presented.
During our investigations we examined, nu-
merically, the following hypothetical systems
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where the functions ki, hi, i = 1, 2 represent
predatory and harvesting rates occurring in the
differential equations (1).
We must mention that the parameters used in
the numerical calculations in this work do not
represent any real systems and are introduced
for illustrative purposes only. The actual func-
tions and parameter values were obtained by
careful guessing.
We display graphically only the results for
System 5 and mention that results for all of the
systems examined support the present theory.
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In Section 2 we set up the equations rep-
resenting our model. In Section 3 we examine
the stability of equilibrium states, while Sec-
tion 4 contains the Hopf bifurcation analysis.
Section 5 is devoted to the applications and in
Section 6 we give the results.

2 Equations defining the model

The equations which we consider as defin-
ing the predator-prey model which allows the
predator to switch towards the most abundant
prey specie and which includes general preda-
tory and harvesting rates are:
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where
xi : represents the prey population in the two
different habitats
δi : represents the harvesting rate of the prey
population in the two different habitats
y : represents the abundance of predator
species
βi : the predator response rates towards the
prey xi

ci : the rate of conversion of prey to predator
εi : inversion barrier strength in going out of
the habitat
pij : the probability of successful transition
from the ith habitat to the jth habitat
αi : specific growth rate of the prey in the ab-
sence of predation

µ : per capita death rate of the predator and
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spectively, which must satisfy certain general
conditions.
All of the coefficients δi, βi, ci, εi, pij, αi, and
µ are positive.

3 Stability of the equilibrium

Denoting the equilibrium values of the sys-
tem in eqn.(1), when all species exist, by

(X1,X2, Y ) and letting X̄ =
X1

X2
we have, on

solving the equilibrium equations, i.e. eqns.(1)
with the left-hand-sides equal to zero,
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The variable X̄ satisfies the following equa-
tion, obtained by equating the two expressions
for Y ,[{
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(
1
X̄

)}
X̄ + ε2p21

]
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Now we observe that X̄ is independent of
c1 and c2 and hence also is Y from eqn.(2).
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Further, since Y must be positive, then from
eqn.(2) we must satisfy the following inequal-
ities
ε2 − α2 + δ2h2(X̄)

ε1p12
< X̄ <

ε2p21

ε1 − α1 + δ1h1

(
1
X̄

) (4)

where β1, β2, k1, k2 are positive.

3.1 Assumptions and general stability
conditions

We shall now examine the stability of the equi-
librium point E = (X1,X2, Y ). We linearize
the eqns.(1) by considering a small perturba-
tion about the equilibrium point i.e. by substi-
tuting x1 = X1 + u, x2 = X2 + v, y = Y + w
and neglecting higher order terms in u, v and
w. We now make the following assumptions:

Assumption 1: All predatory and har-
vesting functions, k1, h1, k2, h2, possess
Taylor expansions,

Assumption 2: All predatory and har-
vesting functions, k1, h1, k2, h2 are de-
creasing functions,

Assumption 3: (The Switching As-
sumption)]

We point out here that this assump-
tion enters only when we consider sit-
uations which must reflect the type of
feeding mechanism by the predators(in
the present case a switching mechanism).
This assumption is placed in this section
just so as to have all assumptions which
are employed in the work in one place.

The predatory rate functions satisfy the
following conditions:
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(5)

then the resulting characteristic equation is
∣∣∣∣∣∣∣
−D

X̄
− λ D −w1

C −CX̄ − λ −w2

AY BY −λ

∣∣∣∣∣∣∣
= 0. (6)

This equation can be written as

λ3 + b1λ
2 + b2λ + b3 = 0 (7)

where

b1 = X̄C +
D

X̄
,

b2 = Y (Aw1 + Bw2),

b3 =
Y

X̄
(AX̄ + B)(Dw2 + CX̄w1). (8)
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In order to have stability of the equilibrium
points the eigenvalue solutions, λ, must have
negative real parts. Conditions for this to hap-
pen are provided by the Routh-Hurwitz crite-
ria. These criteria imply that the eigenvalues
will have negative real parts if and only if

b1 > 0,

b3 > 0,

b1b2 − b3 > 0.

From Assumption 2 we see that C > 0, D >
0 hence b1 > 0. From eqn.(8) we see
that b3 is positive if X̄A + B > 0 since
X̄, Y,w1, w2, C,D are positive. Now replac-
ing A,B by their definitions and collecting
terms, we can show that
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Using the ”Y -equilibrium equation” and per-
forming the differentiations implied on the
right hand side, we get

X̄A + B =
µ
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which tells us that b3 > 0.
Thus, with the Assumptions 1 and 2, we have
stability of the general equilibrium point, if
and only if,
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where A,B,C,D are defined in (5).

4 Hopf Bifurcation

Following the analysis of [1] and [2] we obtain
the following theorem:

Theorem 1 Let the equilibrium E =
(X1,X2, Y ) exist and let A > 0, B > 0,
then if c̄1 is a positive root of the equation
b1b2 = b3, we have a Hopf bifurcation, [3], as

c1 passes through c̄1 provided X̄ �= w1

w2
.

If we perform a similar analysis with c2 (the
rate of capture of the prey in the second habitat
to the predator) as the variable parameter, we
shall get a similar result.

5 Applications

As mentioned in the Introduction, we exam-
ined six hypothetical systems the results for
which support the present theory. However, we
display graphically the results for only System
5. This is the system given by eqn.(1) with
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In light of Theorem 1 we can write the follow-
ing Theorem:

Theorem 2 Let the equilibrium E =
(X1,X2, Y ) exist and A > 0, B > 0, and c̄1
be a positive root of the equation b1b2 = b3,
then a Hopf bifurcation occurs when c1 passes

through c̄1 provided X̄n �= β2

β1
.

2005 WSEAS Int. Conf. on DYNAMICAL SYSTEMS and CONTROL, Venice, Italy, November 2-4, 2005 (pp26-32)



6 Results

Both Predatory rates Multiplicative and
both Harvesting rates Exponential
In our work we examined several parameter
sets but we display only one since we do not
apply our results to any real system. They all
supported the theory. The parameter set used
is as follows:
µ = 0.01, α1 = 0.015, α2 = 0.025, β1 =
0.01, β2 = 0.02, p12 = 0.3, p21 = 0.2, ε1 =
0.02, ε2 = 0.03, δ1 = 0.0001, δ2 = 0.0005,
with c1 = 0.1, c2 = 0.1, n = 1(stable) and
c1 = 0.1, c2 = 0.4, n = 2(unstable). The be-
havior of the populations are graphically dis-
played in Figs.(1) and (2). These behaviors
support the theory as do all other sets exam-
ined.
It is interesting to observe that in the cases we
examined, when there is an instability and the
populations of the preys have a ”minimum” i.e.
decrease, the population of the predator shows
a ”maximum” i.e. it appears that some of the
predators give ”birth”.
As mentioned in the Introduction we do not
apply our work to any real system, we only
consider hypothetical cases, however, we feel
that our work is of interest in the sense that we
have used arbitrary predatory and harvesting
rate functions, hence it will compliment other
existing works.
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