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Abstract: - In this paper an approach for robust anti-windup compensation design for multivariable
controllers based on the characterization of H2-H∞ norms as Linear Matrix Inequalities (LMI) is presented.
The method consider a mix of H2-H∞ performance indexes on the transfer functions of the disturbances to
the controlled output, and of the actuator output signal to the controller output signal. The controller and
the compensation gain are obtained by numerical solution of the LMIs system. The robustness is considered
by assuring the closed loop performance, spite of unknown changes on the actuator saturation limits.
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1 Introduction

In general, the controlled industrial processes present
actuator saturation problems. In control theory that
restriction is denominated the bounded control prob-
lem, which can be solved by substitution of the con-
trol policy.

On the other hand, the control systems can oper-
ate in multiple environments and with multiple ob-
jectives. Each specific situation defines the operation
mode, which can require a controller commutation.
The modes commutation is the substitution in the
plant inputs, considering that the controller output
is replaced by another.

As a result of substitutions and limitations, the
plant inputs will be different to the controller’s out-
put. When this happens, the controller outputs don’t
drive the plant appropriately and the controller’s
states will be strongly updated, [7, 9]. This effect is
called Wind-Up. In global terms, the wind-up is one
inconsistency among the control input given to the
process and the internal states of the controller. The
adverse effect of the wind-up is a significant perfor-
mance deterioration, overshoots and even instability,
[9, 2].

The wind-up problem can be handled by means of
compensation where, in a first stage, it is designed
the control system without taking into account the
restrictions; and in a second stage, some compensa-
tion scheme is found, with the purpose of minimizing
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the limitations and commutations effect. The last
outlined focus has been denominated the anti-windup
bumpless transfer problem (AWBT), [7].

The main advantage of this design methodology
is that no restrictions are placed on the original lin-
ear controller design. The main disadvantage is that
although the linear controller and anti-windup com-
pensator both affect the closed-loop performance; so,
the effect of the linear controller on the performance
under saturation is completely ignored. In addition,
the possible changes of the saturation limits is not
considered, which can result very inconvenient.

For robustness in the AWBT compensation design,
[11] present a general formulation of the problem of
multivariable AWBT controller synthesis. The re-
sulting synthesis method demonstrates graceful per-
formance degradation whenever input nonlinearities
are active through minimization of a weighted L2

gain. The AWBT controller synthesis, using static
compensation, is cast as a convex optimization over
linear matrix inequalities. [15] present a method
based on L2 performance. An static anti-windup
compensator is obtained and both the nominal per-
formance problem and robust performance problem
can be reduced to a generalized eigenvalue problem.
[6] study linear anti-windup augmentation for linear
control systems with saturated linear plants in the
special case when the anti-windup compensator can
only modify the input and the output of the windup-
prone linear controller and the performance is mea-
sured in terms of the L2 gain from exogenous inputs

2005 WSEAS Int. Conf. on DYNAMICAL SYSTEMS and CONTROL, Venice, Italy, November 2-4, 2005 (pp208-213)



to selected performance outputs. [12] present an ap-
proach for AWBT compensation design for PID con-
trollers based on the characterization of H2 and H∞
norms as Linear Matrix Inequalities. The robust-
ness is considered by assuring the closed loop per-
formance, spite of unknown changes on the actuator
saturation limits.

In this paper a generalization of the approach given
in [13] is presented. In this case, the multivariable
controllers are considered, and the performance is
studied from multi-objective criteria on the closed
loop transfer function of the control system and on
the transfer function of the actuator output respect
to controller output.

2 Problem formulation

In order to introduce the robustness problem for the
anti-windup compensation design; let us consider the
following linear model:

ẋ(t) = Ax(t) + B1ω(t) + B2σ(u)
z(t) = C1x(t) + D11ω(t), (1)
y(t) = C2x(t) + D21ω(t),

where x ∈ <n are the states, ω ∈ <r are the distur-
bances, u ∈ <p are the controls, z ∈ <m are the
controlled outputs, and y ∈ <q are the measured
outputs. A, B1, B2, C1, C2, D11, D21 are known
matrices, which have appropriate dimensions.

The non-linear function σ(◦) denotes the actuator
saturation, which is defined by

σ(ui) =





uimin
if u(t) < uimin

u(t) if uimin
≤ u(t) ≤ uimax

uimax
if u(t) > uimax

, i = 1, 2, . . . , p
(2)

The AWBT compensation problem is formulated
due to the limitations and/or substitutions, where a
non linearity appears among the controller’s output
and the effective process input.

The effective control input σ(u) is a non-linear
function of the controller’s output u(t). In order to
satisfy the control requirements, a dynamic controller
with compensation is considered, which is given by

ζ̇(t) = Acζ(t) + Bcy(t) + Ec[σ(u)− u]
u(t) = Ccζ(t) + Dcy(t), (3)

where Ac, Bc, Cc Dc corresponds to the dynamical
matrices of the controller, which are design parame-
ters. Ec represents the compensation gain, which is
also a design parameter.

When the controlled system is in saturation, the
signal ϑ = σ(u)−u is not null, and performance dete-
rioration, overshoots and/or instability are presents.
For compensation, the controller dynamic matrices
Ac, Bc, Cc, and Dc are designed without considering

the actuator saturation, while the effect of the satu-
ration on the performance in closed loop is minimized
by means of the selection of the gain Ec. The com-
pensation have effect when the signal ϑ = σ(u)−u is
not null, and an additional feedback is incorporated
in order to make that signal be null, again, through
the upgrade of the control signal u, which will be
inside of the actuator saturation limits.

Thus, the system in closed loop is given by

ẋ = Ax + B1ω + B2u + B2ϑ

ζ̇ = BcC2x + Acζ + Ecϑ (4)
z = C1x + D11ω

u = DcC2x + Ccζ(t) + DcD21ω,

which is equivalent to

ẋ = (A + B2DcC2)x + B2Ccζ +
(B1 + B2DcD2)ω + B2ϑ

ζ̇ = BcC2x + Acζ + BcD21ω + Ecϑ (5)
z = C1x + D11ω,

u = DcC2x + Ccζ + DcD21ω.

The performance of the closed loop system without
saturation is studied from the transfer function of the
disturbance ω to the controlled output z, [10]. In this
case, be Tzω such transfer function

Tzω(s) =
[
A B1

C1 D1

]
= C1(sI− A)−1B1 + D1 (6)

where

A =
(

A + B2DcC2 B2Cc

BcC2 Ac

)
, B1 =

(
B1 + B2DcD2

BcD21

)
,

C1 = (C1 0) , D1 = D11.

Problem 1: By performance requirements, with-
out saturation, is necessary to design a dynamic con-
troller (3) such that

1. The closed loop system (5) be asymptotically sta-
ble.

2. ‖Tzω‖2 < µ or ‖Tzω‖∞ < γ, where the perfor-
mance indexes µ > 0, γ > 0.

Some approaches are well known in the literature
on robust control, [1, 16, 5].

When the saturation is present is necessary to con-
server the stability properties. It is guaranteed by
means of the global stability of the bounded input
system, that which, in case that this problem con-
cerns, is guaranteed by means of the compensation
gain design. This way, the synthesis problem consists
in designing Ec that guarantees the effectiveness of
the compensation under some robust stability condi-
tion in perturbed systems. The closed loop stability
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is satisfied, in first place, for the appropriate selec-
tion of the dynamic matrices of the controller. The
second condition, lied to the bounded input systems
stability, will allow the compensation under global
stability. Some results can be found in the literature,
[7, 8, 11].

On the other hand, it is necessary to consider as-
pects of robustness with relationship to the operation
of the actuators. In this sense, we should design the
compensation gain in order to guarantee the closed
loop stability and to minimize the effect of the dis-
turbance signal ϑ on the control signal u when the
saturation becomes present. Therefore, the compen-
sation gain design problem can be focused starting
from the norms H2 and H∞.

Let consider the transfer function of the control
signal with respect to the signal ϑ

Tuϑ(s) =
[
A B2

C2 D2

]
= C2(sI− A)−1B2 + D2 (7)

where

B2 =
(

B2

Ec

)
, C1 = (DcC2 Cc) , D2 = 0.

Problem 2: Given the dynamic system (1), to design
the compensation gain Ec for the controller (3), such
that:

1. The closed loop system (5) be asymptotically sta-
ble.

2. The effect of signal ϑ on the control signal u be
minimum, in some sense.

Thus, robust performance indexes with respect to
saturation limits changes can be obtained, which is
a typical demand in an industrial processes control
environment where the actuator elements: control
valves, hydraulic actuators, etc., can be deteriorated
for the intensive use, parts obsolescence, construction
materials degradation, among other aspects. There-
fore, it is necessary to design compensation mecha-
nisms, in order to guarantee some robustness charac-
teristics, which should consider changes in the actu-
ator devices performance, [13, 15].

In summary, we have formulated two problem: a
typical optimal control problem and a robust com-
pensation synthesis problem. Both problems can be
outlined as a multiobjective control problem:

Problem: Given the dynamic system (1), to design
the controller with compensation (3) such that:

1. The closed loop system (5) be asymptotically sta-
ble.

2. ‖Tzω‖2 < µ or ‖Tzω‖∞ < γ, where the perfor-
mance indexes µ > 0, γ > 0; subject to that

3. The effect of signal ϑ on the control signal u be
minimum, in some sense.

Under this formulation, the design objectives can
be a mix of H2 performance, H∞ performance,
asymptotic disturbance rejection, which can derive
a system of linear matrix inequalities, just as it has
been established in the multiobjective H2/H∞ con-
troller synthesis, [14, 4].

In this context, it is possible to develop a system-
atic design technique that combines important as-
pects the feedback control synthesis with anti-windup
compensation design taking advantage of the formu-
lation of multiple objectives.

3 Control-Compensation Syn-
thesis

In this point, we intend to satisfy the design con-
straints that imposes the anti-windup compensation,
such as has been formulated in the problem 2. Thus,
we want design the controller with compensation (3)
such that the closed loop system (5) be asymptoti-
cally stable and ||Tuϑ||22 < µ or ||Tuϑ||∞ < γ.

3.1 H2 Formulation

In this case, we want design the controller (3) such
that ||Tuϑ||22 < µ, for all µ > 0, which guarantees
requirements of anti-windup compensation. The fol-
lowing lemma is a well known result, which com-
pletely characterizes the H2 norm constraint through
LMI [1, 14].

Lemma 3.1 The inequality ||Tuϑ||22 < µ holds if,
and only if, D = 0 and there exists symmetric matri-
ces X > 0, and W such that

[
AX+ XAT B

(◦)T −I
]

< 0,

[
W CX

(◦)T X

]
> 0,

tr(W) < µ.
(8)

is feasible.

Proposition 3.1 Consider the system defined by (1)
and the controller with compensation given by (3).
The controlled system is asymptotically stable with
robust compensation, because ||Tuϑ||22 < µ, iff there
exists symmetric matrices of n order X > 0 and Y >
0; matrix Q ∈ <n×n; matrices L ∈ <p×n, F ∈ <n×q,
R ∈ <p×q, M ∈ <n×p; and a symmetric matrix W ∈
<p×p satisfying the following LMIs:




AX + XAT + B2L + LT BT
2 A + B2RC2 + QT

(◦)T YA + AT Y + FC2 + CT
2 FT

(◦)T (◦)T

B2
YB2 + M

−I


 < 0,



W L RC2

(◦)T X I
(◦)T (◦)T Y


 > 0,
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tr(W) < µ.

The controller is obtained from
(
Ac Bc
Cc Dc

)
=

(
V−1 −V−1YB2

0 I

) (
Q −YAX F

L R

) (
U−1 0

−C2XU−1 I

)
.

The compensation gain matrix Ec is given by

Ec = V−1M;

where V and U are non singular matrices satisfying
YX + VU = I.

Proof
The proof is based on the typical linearization proce-
dure of the matrix inequalities through the congru-
ence transformation and variable changes. ¥

This formulation guarantees the stability in the
case of saturation with a minimum effect on the con-
troller’s output signal.

3.2 H∞ Formulation

In this environment, we want to design the controller
3 such that ||Tuϑ||∞ < γ, for all γ > 0. It is well
known that the H∞ norm has a characterization
as LMI constraints according to the Bounded Real
Lemma [1, 14]:

Lemma 3.2 The inequality ||Tuϑ||∞ < γ holds if,
and only if, there exist a symmetric matrix X, such
that 


ATX+ XA XB CT

(◦)T −γI DT

(◦)T (◦)T −γI


 < 0. (9)

Proposition 3.2 Consider the system defined by (1)
and the controller with compensation given by (3).
The controlled system is asymptotically stable with
robust compensation, because ||Tuϑ||∞ < γ, iff there
exists symmetric matrices of n order X > 0 and Y >
0; matrix Q ∈ <n×n; matrices L ∈ <p×n, F ∈ <n×q,
R ∈ <p×q, M ∈ <n×p; such that the following LMI
is satisfied:




AX + XAT + B2L + LT BT
2 A + B2RC2 + QT

(◦)T YA + AT Y + FC2 + CT
2 FT

(◦)T (◦)T

(◦)T (◦)T

B2 LT

YB2 + M CT
2 RT

−γI 0
(◦)T −γI


 < 0.

The controller is obtained from
(
Ac Bc
Cc Dc

)
=

(
V−1 −V−1YB2

0 I

) (
Q −YAX F

L R

) (
U−1 0

−C2XU−1 I

)
.

The compensation gain matrix Ec is given by

Ec = V−1M;

where V and U are non singular matrices satisfying
YX + VU = I.

Proof
In a similar way that in the previous case, the demon-
stration is constructed from appropriate transforma-
tion and changes of variables on the LMIs. ¥

The performance index based-on theH∞ norm cor-
responds to the L2 gain of the controller output signal
with respect to the actuator output signal.

3.3 Anti-Windup Controller via
Mixed H2/H∞

Starting from the previous results, it is possible to
outline different design objectives considering the
control performance and the compensation require-
ments. For example, the following objectives can be
formulated:

1. ‖Tzω‖∞ < µ subject to ||Tuϑ||2 < γ.

2. ‖Tzω‖2 < µ subject to ||Tuϑ||∞ < γ.

In order to propitiate the study, we particularly show
the H∞-H2 multiobjective design problem. The H2-
H∞ case can be treated in the same way.

Corollary 3.1 The system defined by (1) is stabiliz-
able by the full order dynamic output feedback control
with compensation (3) such that ||Tzω||∞ < µ and
||Tuϑ||22 < γ, iff there exists symmetric matrices of n
order X > 0 and Y > 0; matrix Q ∈ <n×n; matrices
L ∈ <p×n, F ∈ <n×q, R ∈ <p×q, M ∈ <n×p; and a
symmetric matrix W ∈ <p×p satisfying the following
LMIs:




AX + XAT + B2L + LT BT
2 A + B2RC2 + QT

(◦)T YA + AT Y + FC2 + CT
2 FT

(◦)T (◦)T

(◦)T (◦)T

B1 + B2RD21 XCT
1

YB1 + FD21 CT
1

−µI DT
11

(◦)T −µI




< 0.




AX + XAT + B2L + LT BT
2 A + B2RC2 + QT

(◦)T YA + AT Y + FC2 + CT
2 FT

(◦)T (◦)T

B2
YB2 + M

−I


 < 0,



W L RC2

(◦)T X I
(◦)T (◦)T Y


 > 0,

tr(W) < γ.

The controller is obtained from
(
Ac Bc
Cc Dc

)
=

(
V−1 −V−1YB2

0 I

) (
Q −YAX F

L R

) (
U−1 0

−C2XU−1 I

)
.

The compensation gain matrix Ec is given by

Ec = V−1M; (10)

where V and U are non singular matrices satisfying
YX + VU = I.
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This result shows that one can easily find the ap-
propriate LMI formulation for each particular specifi-
cation, whereH2/H2 andH∞/H∞ criterium can also
be considered. For instance, the design problem can
involve an constraint on the controlled signal, and a
constraint on the control signal from the saturation
signal. Then, it possible find the corresponding syn-
thesis LMIs on the multiobjective problem, and solve
the LMI system numerically to derive a solution.

4 Numerical Example

Let us consider the F-8 fighter aircraft model, which
describes its longitudinal dynamics, [3]:

ẋ =




−0.8 −0.006 −12 0
0 −0.014 −16.64 −32.2
1 −0.0001 −1.5 0
1 0 0 0


x +




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


 ω +




−19 −3
−0.66 −0.5
−0.16 −0.5

0 0


σ(u)

z =
(

0 0 0 1
0 0 −1 1

)
x +

(
0 0 1 0
0 0 0 1

)
ω

y =
(

0 0 0 1
0 0 −1 1

)
x

In this example, the bounded controls u1 ∈
[−25, 25] and u2 ∈ [−25, 25] are considered.

By means of LMI toolbox for MathLab c©, the
linear inequalities for the ‖Tzω‖∞ < µ subject to
||Tuϑ||∞ < µ problem are solved. The following re-
sults are obtained:

µ = 1.0125

Ac = 1.0×104




−0.0674 0.0001 −1.7866 −2.3089
−0.0024 0.0000 0.5904 0.2884
−0.0006 0.0000 −0.0008 −0.0059
0.0001 −0.0000 −0.0018 −0.0020




Bc = 1.0× 104




3.8947 −1.9456
−0.8909 0.5866
0.0043 −0.0020
0.0038 −0.0018




Cc =

(
434.8067 −0.0509 −74.3562 195.8146
3.3372 −0.0050 −2.8796 11.3936

)

Dc =

(−18.5431 9.8052
3.3972 −3.1300

)

The compensation gain obtained is

Ec =




−18.9767 −3.0047
−0.6616 −0.5139
−0.1600 −0.5000
0.0000 −0.0000


 .

For the time analysis, a simulation was made.
In order to evaluate the robustness with respect to
changes in the saturation limits, an actuator with
u ∈ [−10, 10] was considered. Figure 1 shows the
results for the actuator outputs without saturation,
while the Figure 2 shows the actuator outputs with
saturation and without compensation, and with com-
pensation.

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
x 10

4

Time (s)

u(
t)

(a)

Figure 1: The actuator outputs without saturation.

0 1 2 3 4 5 6 7

−10

−8

−6

−4

−2

0

2

4

6

8

10

Time (s)

σ(
u)

(b)

σ(u
1
) with compensation

σ(u
2
) with compensation

σ(u
1
) without compensation

σ(u
2
) without compensation

Figure 2: The actuator outputs with saturation.

For the case without saturation, it can notice that
the control signal overcomes thoroughly the action
limit of the actuator. In saturation, the compen-
sation action allows to enter in the actuator limits,
which guarantees the stability of the system in spite
of changes in the saturation limits. The temporary
behavior without saturation and with compensation
are similar, while that for without compensation case
the system is unstable due to the saturation, see Fig-
ure 3.

Just as it can be observed in the Figure 3, the
compensation guarantees the system closed loop per-
formance, in spite of the change in the saturation
limits. In the without-compensation case the time
response is deteriorated (unstable). This situation is
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Figure 3: The controlled outputs.

important to evaluate for critical system such as the
F-8 fighter aircraft. Thus, it is important to consider
some robustness characteristics for designing the gain
compensation matrix such as has been proposed.

5 Conclusion

An approach for robust anti-windup compensation
design for multivariable systems has been presented.
The technique is based on H2 and H∞ norms charac-
terization as Linear Matrix Inequalities (LMI). The
robustness analysis is considered on the closed loop
transfer matrix of the controlled output respect to
the perturbation, and on the transfer function of the
control signal respect to difference between the actu-
ator output and the controller output. This differ-
ence is also considered as a perturbation. A mix the
criteria in H2/H∞ are studied, which allows to guar-
antee the robust stability and performance, in spite of
unknown changes on the actuator saturation limits.
The robust compensation gain design is obtained by
means LMIs, which allows to describe a convex op-
timization problem. This problem can be solved in
polynomial time by specialized algorithms.
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