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Abstract: The tasks planning in the transport domain is a difficult problem which requires the use of analytical 
techniques and modelling methods resulting from the operational research, the distributed Artificial Intelligence (multi-
agents systems), the decision analysis, and many other disciplines. Our contribution to this problem consists on one 
hand of proposing a modelling of the transport system by a multi-agents system (MAS) based on a classification model 
of agents to manage our different agent Subsystems (supervision subsystem, planning subsystem, ergonomic 
subsystem) at the same time, while keeping a global structure; and on the other hand of deploying a Fuzzy Hopfield-
Neural Network model to solve the routing and scheduling problems within our planning subsystem. The 
computational experiments were carried out on an extended set of 300 Routing problems with 21 customers. The 
results demonstrate that the connexionist approach is highly competitive in term of computing time, providing the best 
solutions to 56% of all test instances within reasonable computing times. The power of our algorithm is confirmed by 
the results obtained on 21 customer problems from the literature. 
 
Key-Words: Combinatorial optimization, vehicle routing, Hopfield-Neural Network, Simulated Annealing, Multi Agent 
Systems, Tasks Planning, Transport. 
 
1   Introduction  
The globalisation of the economy has completely 
changed the world of transport.  In no time, the transport 
companies had to change working methods and materials 
in order to invest in new expensive vehicles’ fleet. The 
tendency is under concentration:   
     A financial concentration, which results in fusion- 
takeover, and a technical concentration to avoid an 
overloading capacity of vehicles. Alliances and fusions 
within the actors of the transport are one of the 
globalisation phenomenon results:  a company which is 
required for a transport service can organize it, even if its 
own vehicles do not serve this destination. Generally, the 
transport firms must restructure their management 
systems to meet the changes imposed by the 
globalisation of the economy, in order to be able to 
satisfy the needs of the multinational companies.  This 
reorganization of the management systems of transport 
imposes a radical change of the management approach of 
the company in the strategic, organisational and 
operational levels. In this work we are interested 
particularly in the tasks planning problems involved in 
the operational level.  
     First we will model the transport domain by a multi-
agents system based on a classification model of agents 
to manage our different agent Subsystems (supervision 
subsystem, planning subsystem, ergonomic subsystem) at 

the same time, while keeping a global structure [1]. This 
classification will enable us to identify and use the 
optimisation algorithms which will be useful to the 
planner agents during the distribution and the 
decomposition of tasks among the Ergonomic agents [2].          
A second objective of this work is to set up an original 
technique for vehicles' routing problem and vehicle' 
distribution within the planning subsystem. It aims to 
develop new models for interpretation, negotiation and 
planning.  The resolution approach that we recommend is 
based on a Hopfield-neural network model in order to 
generate solutions satisfying multiple side constraints 
(maximum capacity, time windows…) in real time. 
     The remainder of this paper is articulated around four 
sections.  Section 2 gives a short definition of agents and 
multi-agents systems and describe the various 
subsystems of our multi agents framework.  Section 3 
presents the tasks planning in the transport domain, gives 
a description of the vehicle routing problem and an 
overview  of the related works, in the fourth section we 
will present our Hopfield-Neural Network model 
proposed to solve the VRP within the planning 
subsystem; and discuss the experimental results carried 
out on an extended set of 300 Routing problems with 21 
customers. Finally we finish this paper by a conclusion 
and the prospects for this work.  
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2   Modelling of the transport systems 
domain by MAS  
2.1   Agent and multi-agents systems 
We mean by agent, the design of an autonomous 
computing entity capable of arguing. Such an entity is 
also capable of communicating, exchanging points of 
view, negotiating [3] and collaborating with the other 
entities of its environment. Each entity is characterized 
by: 
 Autonomy:  the agent acts without the intervention 

of humans or other entities, and has a certain control on 
its internal actions and its states.   
 Social ability:  the agent interacts with other agents 

(automated agents or humans) using an agent language 
communication. 
 Reactivity:  the agent perceives its environment 

(which can be a physical world, a user via a graphic 
interface, a whole of other agents, or all these elements 
combined), and reacts in an opportunist way to all 
changes, which can occur in that environment. 
 Pro-activity:  the agent does not act simply with the 

stimuli of its environment; but it is also able to show 
behaviours directed by goals.  
     A multi-agents system (MAS) [4] is an environment, 
which contains several agents able to interact among 
them, In general, the interactions are implemented by a 
transfer of information among agents or the environment 
and the agents, either by perception, or by 
communication.   
The principal characteristics of MAS are:   
1. The heterogeneity of agents: the messages must be 
mutually comprehensible.   
2. The exchange of knowledge: a co-operative agent 
within the MAS must be able to express its various kinds 
of knowledge.   
3. Local control:  the agents must be autonomous. In 
other word their behaviour does not have to depend 
neither on a central planner nor of predefined 
interactions.   
 
 
2.2   A multi-agent framework model for the 
transport domain 
In the transport domain we can distinguish two different 
kinds of physical entities: transport companies and 
vehicles, which can be modelled by agents. Transport 
companies (supervisor agents) have a fleet of vehicles 
(Ergonomic agent)  and are brought to assign to their 
fleet a set of orders channelled to them in an 
asynchronous and dynamic way while respecting a set of 
constraints. Our multi agent framework is based on a 
classification model of agents to manage different agent 
Subsystems at the same time, while keeping a global  

structure [1]. This classification makes it possible to 
gather all freight management tasks and Vehicle fleet 
scheduling tasks, loading and unloading operations in a 
subsystem (Planning Subsystem); tasks relating to the 
transport of merchandises, in a subsystem (Ergonomic 
Subsystem); and tasks relating to supervision and 
management of different agent groups in a subsystem 
(Supervision Subsystem). Therefore a transport domain 
will be composed of the three following subsystems (see 
figure 1):   
 
 
 
 
 
 
 
 
 
 

 

Supervision subsystem 

Information Exchange 

Planning subsystem 

 
Information Exchange  

 
 Ergonomic subsystem 
 
 
 

Fig.1: Classification of a Transport domain  
 
 
 A supervision subsystem   deals with the management 

of the planner agents and ergonomic agents  
 A planning subsystem deals with the planning and 

management of freight and vehicles’ fleet, and loading 
unloading operations; each planner agent receives orders 
(messages) from the supervisory agent to serve a set of 
customers (solve a VRP), it deals with the optimisation 
of itineraries (using Hopfield Neural network algorithm), 
it affects to each Ergonomic agent a specific tour in 
order to serve all customers while minimizing the total 
cost. 
 An ergonomic subsystem (made up of vehicles with 

their drivers) deals with the management of pick-up and 
delivery tasks; it is capable of making deliveries of 
orders in various cities, of generating local plans, and of 
negotiating among the other agents to minimize the cost 
of the common plan. Each ergonomic agent Ak receives 
orders (messages) from the planner agents in the form : " 
transport ui units of the goods G from the depot to the 
customer Ck

i. After having delivered all of orders, the 
ergonomic agents must turn back to the Depot of 
departure.   
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3   The tasks planning in transport 
domain  
The tasks’ planning in the transport domain constitutes a 
crucial problem. It consists in developing algorithms and 
powerful strategies for the resolution of mathematical 
programming problems and combinatorial optimisation 
problems which we can generally find in the models 
developed in the transport domain, and particularly the 
traffic assignment problem in the transport domain. The 
daily management of transport system involves making 
decisions regarding three main aspects: request 
clustering, vehicle routing and vehicle scheduling. 
Request clustering consists of creating groups of 
requests to be served by the same ergonomic agent 
because of their spatial and temporal proximity. Given 
these groups, vehicle routing consists of deciding the 
order in which the associated pickup and delivery 
locations should be visited by each ergonomic agent. 
Finally, vehicle scheduling specifies the exact order in 
which each location should be visited. These decisions 
are obviously tightly intertwined and a proper 
management of the transport system calls for their 
optimization using real time heuristics. 
     In this paper, we propose a Hopfield-Neural Network 
heuristic to deal with vehicles’ routing and scheduling 
problems encountered by each planner agent.  
 
 
3.1   Problem description and related works 
The Vehicle Routing Problem (VRP) concerns the 
transport of merchandises between depot and customers 
by means of a fleet of vehicles. The VRP can be 
instantiated to many real world transport domains, 
examples are the milk distribution, mail delivery, school 
bus routing, parcel pick-up and delivery and many 
others. In general, solving a VRP means to find the best 
route to service all customers using a fleet of vehicles. 
The solution must ensure that all customers are served, 
respecting the operational constraints, such as vehicle 
capacity and the driver’s maximum working time, and 
minimising the total transportation cost.  
 
 
3.1.1   The mathematical formulation of VRP  
Given a set of n customers denoted by 1,…,n with 
demands Di, i=1,…,n respectively, the nodes 0 and n+1 
represent the depot. All routes start at 0 and end at n+1. 
A cost dij is associated with each pair of customers (i, j). 
The set of vehicles (Ergonomic Agents) is denoted by 
V={1,2,…,M}. Each ergonomic agent has a given 
capacity q. The decision variable  Xk

ij (defined ∀ i,j = 
0,…,n+1) is equal to 1 if The ergonomic agent k drives 
from node i to node j, and 0 otherwise. 
The VRP can be stated mathematically as: 
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     The VRP is a practical problem that has been studied 
widely in the literature. Several papers were published in 
the field in general we can distinguish between exact 
algorithm and approximation algorithms (heuristics). 

 
 
3.1.2   Exact algorithm 
The first paper proposing an exact algorithm for solving 
the VRP was published back in 1987 in [5]. Since then a 
number of papers have been published and almost all the 
algorithms use one of three principles: 
1. Dynamic Programming. 
2. Lagrange Relaxation-based methods. 
3. Column Generation. 
Most of the approaches rely on the solution of a shortest 
paths problem with additional constraints. 
A different approach is described in the Ph.D. thesis [6] 
by Kontoravdis. The research on the VRP has been  
surveyed in the papers [7,8]. 
 
 
3.1.3   Approximation algorithms and heuristics 
The field of non-exact algorithms for the VRP problem 
has been very active far more active than that of exact 
algorithms. A long series of papers has been published 
over the recent years. In the field of approximation 
algorithms and heuristics one sometimes classifies an 
algorithm as sequential or parallel. In a sequential 
algorithm one route at a time is constructed, while a 
parallel algorithm may build more routes at the same 
time. Heuristic algorithms that build a set of routes from 
scratch are typically called route-building heuristics, 
while an algorithm that tries to produce an improved 
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solution on the basis of an already available solution is 
denoted route-improving. 
Route-building heuristics 
The first paper on route-building heuristics for the VRP 
is [9]. Their algorithm is an extension of the legendary 
Savings heuristic of Clark and Wright for the VRP 
problem.  
Route-improving heuristics 
The basis of almost every route-improving heuristic is 
the notion of a neighbourhood. The neighbourhood of a 
solution S is a set N(S) of solutions that can be generated 
with a single “modification” of S. 
Neighbourhoods for the VRP 
One of the most used improvement heuristics in routing 
and scheduling is the r-Opt heuristic. Here r arcs are 
removed and replaced by r other arcs.  
     In [10], Potvin and Rosseau present two variants 2-
Opt and Or-Opt that maintain the direction of the route. 
Simulated Annealing 
Simulated Annealing was one of the first metaheuristics 
developed. When using simulated annealing one does 
not search for the best solution in the neighbourhood of 
the current solution. Instead one simply draws at random 
a solution from the neighbourhood. If the solution is 
better it is always accepted as a new current solution, but 
if the solution is worse than the present current solution 
it is only accepted with a certain probability [11].  
Tabu Search 
Just as simulated annealing, the Tabu Search heuristic is 
one of the “old” metaheuristics. It was introduced by 
Glover [12] in two papers from 1989 and 1990. At each 
iteration the neighbourhood of the current solution is 
explored and the best solution in the neighbourhood is 
selected as the new current solution. In order to allow the 
algorithm to “escape" from a local optimum the current 
solution is set to the best solution in the neighbourhood 
even if this solution is worse than the current solution. 
To prevent cycling visiting recently selected solutions is 
forbidden.  
The Genetic Algorithm 
Genetic Algorithms is an iterative procedure that 
maintains a population of K candidates (solutions). The 
population members can be seen as entities of artificial 
chromosomes (of fixed length with binary values). Each 
chromosome has a fitness value describing the 
“goodness” of the solution. Variation into the population 
is introduced by cross-over and mutation. In previous 
work [13] we have implemented a genetic based 
approach to deal with the VRP within a multi agent 
system of maritime transport. 
Competitive Neural Networks 
In [14] a special type of neural network called 
competitive neural network is used to select the seed 
customers. Competitive neural network is frequently 
used to cluster or classify data. For every vehicle we 

have a weight vector. Initially all weight vectors are 
placed randomly close to the depot. Then we select one 
customer at a time. For each cluster we calculate the 
distance to all weight vectors. The closest weight vector 
is updated by moving it closer to the customer. This 
process is repeated for all customers a number of times, 
each time the process is restarted the update of the 
weight vector becomes less sensitive. 
    
 
4   Neural Networks 
Neural networks grew out of research in Artificial 
Intelligence; specifically, attempts to mimic the fault-
tolerance and capacity to learn of biological neural 
systems by modelling the low-level structure of the brain 
[15]. 
     Neural networks have seen an explosion of interest 
over the last few years, and are being successfully 
applied across an extraordinary range of problem 
domains, in areas as diverse as finance, logistics, 
medicine, engineering, geology and physics. Indeed, 
anywhere that there are problems of prediction, 
optimization, classification or control, neural networks 
are being introduced. This sweeping success can be 
attributed to a few key factors: 
     Power: Neural networks are very sophisticated 
modeling techniques capable of modeling extremely 
complex functions. 
     Ease of use: Neural networks learn by example. The 
neural network user gathers representative data, and then 
invokes training algorithms to automatically learn the 
structure of the data. Although the user does need to 
have some heuristic knowledge of how to select and 
prepare data, how to select an appropriate neural 
network, and how to interpret the results, the level of 
user knowledge needed to successfully apply neural 
networks is much lower than would be the case using 
(for example) some more traditional nonlinear statistical 
methods. 
      
 
4.1   Hopfield-Neural Network 
The Hopfield network is a recurrent neural network with 
no hidden units that belong to penalty methods for 
solving optimisation problems, where the weights are 
symmetric (Wij=Wji). The processing element is an adder 
followed by a threshold nonlinearity. The model can be 
extended to continuous units. The processing elements 
are updated randomly, one at a time, with equal 
probability (synchronous update is also possible). The 
condition of symmetric weights is fundamental for 
studying the information capabilities of this network. It 
turns out that when this condition is fulfilled the 
neurodynamics are stable in the sense of Lyapunov, 
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which means that the state of the system approaches an 
equilibrium point. With this condition Hopfield [16] was 
able to explain that neural network’ input puts the 
system in a point in its state space, and then the network 
dynamics (created by the recurrent connections) will 
necessarily relax the system to the nearest equilibrium 
point.  
     Now if the equilibrium points were pre-selected (for 
instance by hard-coding the weights), then the system 
could work as an associative memory. The final state 
would be the one closest (in state space) to that 
particular input. We could then classify the input or 
recall it using content addressable properties. In fact, 
such a system is highly robust to noise, also displaying 
pattern completion properties.  
     Most Hopfield net applications are in optimisation 
[17], where a mapping of the energy function to the cost 
function of the user’s problem must be established and 
the weights pre-computed. The weights in the Hopfield 
network can be computed using Hebbian learning, which 
guarantees a stable network. Recurrent backpropagation 
can also be used to compute the weights, but in this case, 
there is no guarantee that the weights are symmetric 
(hence the system may be unstable). In our approach we 
implement the Hopfield net and train it with fixed-point 
learning. 
 
 
4.2   Implementation 
In this section we will describe The Algorithm that 
governs the behavior of the planner agents while they are 
distributing tasks among the ergonomic agents selected 
according to their strategic situations. The particularities 
of the MAS make the choice of the adequate algorithm 
among those cited in the literature (see paragraph 2) a 
difficult task due to the hard combinatorial 
characteristics of the VRP.  
     Our approach consists in implementing a new 
Hopfield-Neural Network model that solves the 
Euclidean Vehicle Routing Problem encountered by 
each planner agent (William Wolfe [17], and Lipo Wang 
[18] have applied this model to solve The well known 
Traveling Salesman Problem). The problem is 
represented as an nxn array of neurons (n is the total 
number of customers to be served), where states that 
have one maximal neural activation in each row and 
column correspond to a tour. The neural activations are 
initialized to very small random values, and then the 
network dynamics will drive the network into a state that 
corresponds to a permutation matrix. 
     Convergence Criteria: 
 If there is a unique neuron in each row and column with 
activation above the threshold (in most simulation runs 
we set threshold=0.8), then we halt the simulation and 

declare the corresponding permutation matrix to be the 
output. 
     It is still possible that the activations will not satisfy 
these criteria.  So, we have set an absolute maximum 
number of iterations (10000 iterations).  If most 
simulation runs reach the maximum number of iterations 
without satisfying the convergence criteria, then the 
algorithm will automatically lower the threshold to 0.60 
and try again.  The lower threshold may cause an 
occasional premature convergence, but it also make the 
network run faster (fewer iterations).  In other words, 
with a higher threshold we get better tours, but it will 
cost a huge run time. 
     Fuzzy Read Out: To read the network activations at 
every iteration (i.e.: convert the activations into a tour 
even when the activations are very small and when there 
is no clear winner in each row and column) we used the 
Fuzzy Read Out (pseudo-code below) introduced by 
W.J. Wolfe [17]. This fuzzy approach is used to explain 
the networks behavior. The fuzzy interpretation consists 
of computing the center of mass of the positive 
activations in each row. This produces real numbers 
along the time line, one for each customer, and defines a 
tour in a natural way (referred to as a fuzzy tour). A 
fuzzy tour is computed at each iteration, and 
examination of such tours exposes fine features of the 
network dynamics. In short, this means finding the 
center of mass of the positive activations in each row 
and then ordering the customers accordingly.   The 
center of mass calculation is simplified by finding the 
maximum activation, and the corresponding column 
index, and then doing the center of mass calculation for a 
window of plus or minus “base”, where “base" is set to a 
value of 2 or 3.   
1.  Assuming the grid indices:  
columns (time stops):     i 
rows (customers):           j 
2. Set: base = 2     
3. Center of Mass calculation:      
for j = 0 to N-1 /* for each customer  calculate the max 
activation and corresponding index*/ 
max_act = -999999999 
i_max = -1 
for i = 0 to N-1  
     if act(i, j) > max_act then  
          max_act = act(i, j) 
          i_max = i 
     end if 
       next 
// calculate the center of mass: 
sum1 = 0 
sum2 = 0 
for k = i_max - base to i_max + base 
     if a((N+k)%N, j) > 0 then 
          sum1 = sum1 + k * a((N+k)%N, j) 
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          sum2 = sum2 + a((N+k)%N, j) 
     end if 
       next 
/* now store the center of mass ("value") and the 
corresponding customer index */ 
center(j).value = sum1/sum2      
// this is the "center of mass" 
center(j).customer  = j                                 
// this is the customer associated with that center of mass 
       next 
// Now SORT center by value (use a sort routine). 
// After the sort, center(0).value, center(1).value, ...., 
center(N-1).value  
//should be an increasing sequence of center of mass 
values, 
// And, we should have a corresponding sequence of 
customers: center(0).customer, //center(1).customer, etc. 
// So: 
for j = 0 to N-1 
      tour(j) = center(j).customer 
        next 
// That's it.  The sequence of customers in tour(j) 
specifies the tour. 
 
 
4.3   Experimental results 
4.3.1   Simulation Parameters: 
We used an nxn grid of neurons, Number of customers: 
n= 21 
n(i,x) is the neuron at the ith column (time stop) and xth 
row (customer). 
a(i,x) is the activation of neuron(i,x). 
w(i,x,j,y) is the connection strength between neuron(i,x) 
and neuron(j,y). 
net(i,x) = ∑y ∑j (w(i,x,j,y) * a(j,y)) 
Note: external input = 0. 
Row connections: if y = x and j != i :  
w(i,x,j,y) = 1/n2 - 1/n 
Column connections: if y != x and j = i :  
w(i,x,j,y) = 1/n2 - 1/n 
Self connections: if y = x and j = i :  
w(i,x,j,y) = 1/n2 - 2/n 
Distance connections (neighboring columns):  
if y != x and j = i+1 or j = i-1 : 
w(i,x,j,y) = 1/n2 - d(x,y)/n 
All other connections:  if j != i-1, i, i+1, and y != x : 
w(i,x,j,y) = 1/n2               
Maximum neural activation:   M = 1 
Minimum neural activation:    m = -1/(n-1) 
Dynamics:  a(i,x)t+1 = a(i,x)t   +  step * (a(i,x)t - m) * (M - 
a(i,x)t) * net(i,x)t
Step size:   step = 1.0 
Initial activations: very small random numbers: between 
0 and 10-10 (different for each neuron) 

4.3.2   Results 
We used a PC computational environment (x86 Family 6 
Model 8 Stepping 6, AT/AT Compatible). We did 50 
runs for each instance of the 300 VRPs set test, with 
different initialization parameters, 44% of the time the 
algorithm converged to an ambiguous state (no winner in 
each row/column after reached 10000 iterations) but 
56% of the time the algorithm reach best solutions 
within reasonable computing times (in few iterations), 
the figure bellow describe the energy of our Neural 
Network model versus iterations with three different 
initialisation parameters.  
 

 
 

Fig.2 Energy versus Iterations 
 
     The comparison of the obtained results with our 
previous genetic algorithm [13] prove that the Hopfield-
Neural Network model is highly competitive in term of 
computing time providing good results in less than 4000 
iterations hence more adapted to real time decision 
process in multi-agent systems. 
     Our experiments for big instances of VRP showed 
that while our model may converge well to valid 
solutions, it may not converge to good quality solutions 
due to stability problems encountered in penalty methods 
in general.  
 
 
5   Conclusion and Prospects 
In this paper we have provided a multi-agent framework 
modeling for the transport domain based on a 
classification model of agents to manage the different 
agent Subsystems (supervision subsystem, planning 
subsystem, ergonomic subsystem) at the same time, 
while keeping a global structure and deployed a 
Hopfield Neural Net to deal with combinatorial 
optimization problems within the planning subsystem: 
routing and scheduling of ergonomic agents. Our Neural 
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network model has proved its power by the results 
obtained on 21 customer problems from the literature 
providing the best solutions to 56% of all test instances 
within reasonable computing times, about 44% of the 
time the algorithm converged to an ambiguous state (no 
winner in each row/column after reached 10000 
iterations), in this case we used the Fuzzy Read Out 
algorithm to convert the activations into a tour even 
when the activations are very small. 
     In further work we will investigate on the 
implementation of the other subsystems of our multi-
agent framework using a multi-agent development kit to 
provide real-time simulation of agents behavior within 
the transport domain; and we will improve our algorithm 
in order to enable the planner agents to deal with big 
instances of VRP and to overcome the stability 
problems. 
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