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Abstract:  In this paper we construct periodical solutions for systems of nonlinear ordinary 
differential equations and study their stability using the fixed point theorems of Banach and 
Schauder showing the relation to the classical theorems of Picard-Lindeloef and Peano 
respectively.  
 
Key-Words: Systems of Nonlinear Ordinary Differential Equations – Fixed Point Theorem of 
Banach – Fixed Point Theorem of Schauder  –  Periodical Solutions– Stability   
 
 
1 Introduction 
We construct periodical solutions for 
systems of nonlinear ordinary differential 
equations using the powerful fixed point 
theorems of Banach and Schauder. Also we 
study the stability of those solutions.  
         The methods of nonlinear functional 
analysis, especially the fixed point 
theorems, are in several cases generalization 
of classical analytical methods. Many of the 
results are qualitative and not quantitative 
but still very substantial to show global 
performance of the models to be studied 
(see [ 5 ]).  
         In section 2 we present the two 
fundamental fixed point principles of 
Banach and Schauder.  
         The proof of the fixed point theorem 
of Banach and its relation to Picard-
Lindeloef theorem is given in section 3. 

         In section 4 we state the fixed point 
theorem of Schauder and show its relation 
to Brouwer fixed point theorem and Peano 
theorem.  
         Then we construct the periodical 
solutions of our problem and study their 
stability in section 5.  
         Finally the conclusion is then given in 
section 6.  
 

2 Two Fundamental Fixed Point 

Principles 
Several statements of nonlinear functional 
analysis emerge from one of the following 
two central fixed point theorems: 
 

1- Fixed point theorem of Banach, 
which is a generalization of the 
method of successive 
approximation; 
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2- Fixed point theorem of Schauder, 
which is a generalization of the 
choice theorem on compactness. 

 
We consider the initial value problem 
 
           0 0( ) ( , ( )) , ( ) (1)x t f t x t x t y′ = =  
 
If f is continuous, then (1) is equivalent to 
the integral equation 

                 
0

0( ) ( , ( )) (2)
t

t

x t y f s x s ds= + ∫  

The theorem of Picard-Lindeloef proves the 
existence of a unique solution of (1) 
assuming f is Lipschitz  continuous. If f is 
only continuous, the theorem of Peano 
proves the existence of a solution of (1) with 
no statement about uniqueness (see [ 6 ]). 
 
To prove these classical theorems using 
functional analytical methods, we rewrite 
(2) as nonlinear operator equation 
 
                 ( ) , (3)x T x x M X= ∈ ⊂ , 
 
in a suitable function space X. 
 
Then we search for a solution of (3), that 
means we search for a fixed point of T on 
M. 
                
3 Fixed Point Theorem of Banach 
 
In this section we examine the possibility of 
solving the equation 
 
                         ( ) , (4)x T x x M= ∈  
 
through the successive approximation 
 
                  1 0( ) , (5)n nx T x x M+ = ∈  

 
Banach Theorem: 
 
Given 
                  :T M X M⊆ →  
 
with ( , )X d  a complete metric space, where 
M is closed and not empty. 

 
Also the following inequality is assumed 
 

( ( ), ( )) ( , )d T x T x K d x x≤  
 
             , 0 1 (6)for all x x M and K∈ ≤ <  
 
Then we need to prove that (4) has exactly 
one solution and that the successive 
approximations { nx } converge to the 
solution x  with the following error 
estimation 
 
            1

0 1( , ) (1 ) ( , ) (7)n
nd x x K K d x x−≤ −  

 
Proof: 
 
            { }nx is a Cauchy sequence, since 
 

1 1 1( , ) ( ( , ( )) ( , )n n n n n nd x x d T x T x K d x x+ − −= ≤ ≤
             
               2

2 1 0 1( , ) ... ( , )n
n nK d x x K d x x− −≤ ≤ ≤  

and 

               
1

1
0

( , ) ( , )
m

n n m n r n r
r

d x x d x x
−

+ + + +
=

≤ ≤∑  

1
1

0 1 0 1
0

( , ) (1 ) ( , )
m

n r n

r
K d x x K K d x x

−
+ −

=

≤ ≤ −∑  

 
Consequently nx x as n and m→ →∞ →∞  
and we get (7). 
 
As T is continuous (from (6)), applying (5),  
we obtain that  
 
                   ( )x T x as n= →∞ . 
 
To prove the uniqueness we apply 
 

( ) ( )x T x and x T x= = to get 
 

( , ) ( ( ), ( )) ( , ) ;0 1d x x d T x T x K d x x K= ≤ ≤ <
 
That means  x x= . 
 
We can state thar Banach fixed point 
theorem is a generalization of Picard-
Lindeloef theorem (see [ 5 ]). 
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4 Fixed Point Theorem of Schauder 

 
Before stating Schauder fixed point 
theorem, we state first Brouwer fixed point 
theorem: 
 
Brouwer Theorem: 
 
Given  
          : ;nf M R M continuous n N⊂ → ∈  
with 
 
          M compact, convex and not empty. 
 
Then f has a fixed point. 
 
Now we use an approximation process to 
generalize the fixed point theorem of 
Brouwer in an infinite dimensional Banach 
space to get the following fixed point 
theorem of Schauder. 
 
 
Schauder Theorem: 
 
Given  
          : ;T M X M compact⊂ →  
                          
                       X Banach space  
 
with 
  
M closed, bounded, convex and not empty, 
 
Then T has a fixed point. 
 
Here we can also state that Schauder fixed 
point theorem is a generalization of Peano 
theorem (see [ 5 ]). 
 
5 Construction of Solutions 
We consider the following system of 
ordinary differential equations (see [ 1 ]). 
 

( ) ( ) ( , ( ))x t A x t f t x t′ = +  
 
with 

 
 1 2( ) ( ( ), ( ),..., ( )) ;n

nx t t t t Rξ ξ ξ= ∈  
 1 2( , ,..., ) ;nf f f f=  

 1( , ) ( , ) ( , ) ;nf t y f t y for all t y Rω ++ = ∈  
( ) (8)ijA a independent of time=  

 
Now we use the fixed point theorems to 
construct ω − periodical solutions of (8) and 
study their stability. 
 
Assuming 
 
          : nf R x R R continuous→  
with 
 

          
( , )

0
f t y

for y
y

→ →∞  

uniformly with respect to all 0t t≥        (9), 
 
and 
            ( , ) ( , ) ( , )f t y f t y L z r y y− ≤ −  
for all  
            0 , , 0 ;t t z R r≥ ∈ >  
           
             , : , (10)y y y z y z r− − ≤ , 
 
If there are numbers a,b > 0 such that for all 

0t ≥ , we have 
 
                 exp exp ( ) (11)tA a bt≤ − , 
 
we can prove that (8) has ω − periodical 
solutions. 
 
If for 0(0,1) ,nc and all y R t t∈ ∈ ≥ , we have 
 

                       
2 ( , )

(12)
2

a y f t y
c

b
< , 

then we get 
 
           0 0 1 0 2 0( ; , ) exp( ( )x t y t K y K t t≤ − −  

with 
                                 1 2, 0 (13)K K > , 
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which implies the stability of the solutions 
 
 of (8) (see [2 ]). 
 
Example: 
 
Given is the system 
 
                 '

1 1 2 sinx x x t= +  

                 '
2 2 1 cos (14)x x x t= − , 

with 
           2 1( sin , cos )f x t x t= − ; 

          2:f R x R R continuous→ ; 
         ( 2 , ) ( , )f t y f t yπ+ = , 
 
where 
            A I= ; 
            0 0t =  
 
For a suitable choice of 

1 2, , , , ,a b c r z K and K  we can show that (14) 
has 2π − periodical solutions and that these 
solutions are stable. 
 
6 Conclusion 
 
The powerful fixed point theorems of 
Banach and Schauder enable us to solve 
numerous nonlinear problems of 
mathematical physics like waves of liquids, 
quantum field theory, nonlinear oscillations 
and deflection of plates (see [ 3 ] and [ 4 ]). 
 
The case of constructing periodical 
solutions of systems of nonlinear ordinary 
differential equation as well as studying the 
stability of the solutions has been  
successfully solved in a qualitative 
approach.  
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