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Abstract: - We approach the problem of sub-Nyquist sampling of multidimensional, multiband signals, 
with known spectral support that does not necessarily tile Nℜ  under translation. Undersampling is 
achieved by adapting the Papoulis' multichannel sampling scheme. Minimum (Landau) sampling 
density is obtained in some special conditions. 
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1 Introduction 
Sampling strategies and procedures for one-
dimensional, multiband signals have been 
treated by various authors [1], [2], [3], etc with 
the purpose of taking advantage of the spectral 
support structure for reducing the sampling 
rate beneath the Nyquist rate, as close as 
possible to the Landau rate. For this, Papoulis' 
multichannel sampling scheme (MSS) [4] 
provides an appropriate framework. Typical 
applications are in communications, radar, and 
measuring techniques. 
Sampling theorems for multidimensional 
signals are also extensively covered in 
literature, for the case of signals having the 
spectral support included in an N-dimensional 
parallelepiped. The case of a rectangular lattice 
[5] is extended to general lattices [6], by using 
the MSS, and recently further extended to 
periodic/nonperiodic hybrids [7]. Such 
theorems are used in Fourier imaging 
applications (sensor array imaging, synthetic 
aperture radar, magnetic resonance imaging), 
space-time sampling etc. 
In the present paper we consider complex 
valued, finite energy, continuous, N-
dimensional signals, whose spectral support is 
a union of finite cells (also parallelepipeds) in 
the shape of (6) below. We thus generalize to 
multidimensional MSS the one dimensional 
multicoset sampling treated in [2]. 
 
2 Sampling theorem 
Consider an N-dimensional parallelepiped Χ 
that contains the spectral support of the signal. 
Without loss of generality, we can assume that 

a vertex coincide with the origin of Nℜ . Χ is 
tiled by the translations of a cell Χ0, of 
(column) vectors vi, i=1..N . The disjoint cells 
generated by translation are  
 

1 2, [ .. ]N= ⊕ =l 0 Vl V v v vlC  C ,       (1) 
 
where ⊕  denotes translation, and l is a vector 
with integer components from a set 
 

1 2{ [ ... ] | 0..( 1), 1.. }T
N i il l l l L i N

=

= = − =l

L
 (2) 

 
for some integers Li, i=1..N. We have 
 

∈

= l

l
U

L

C C .                         (3) 

 
A two dimensional version of this arrangement 
is represented in Fig. 1. 
The cell Χ0 is divided in parallelepiped 
subcells Γm, not necessarily of equal 
dimensions (Fig. 1). The vector index m is 
taken from a set 
 

1 2{[ ... ] | 0.. 1, 1.. },T
N i im m m m M i N

=

= − =

M
 

(4) 
 

with Mi: integers. 
Parts of the signal's spectral support are 
contained by translations of the subcells Γm, 
which are contained in Χ. We denote by Σm the 
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part of the spectral support that is contained by 
translations of Γm: 
 

( )
∈

= ⊕

m

m m
p

VpU
P

S G ,             (5) 

 
where Πm is a set of integer vectors, and let 

card( )P =m mP .  
The complete spectral support is contained by 
 

∈

= m
m
U

M

S S ,                    (6) 

 
but some of the sets that appear in the right 
hand side can be empty. 
There exist translations of the subcells that are 
disjoint of Σ. Their union is 
 

( )c

∈

= +

m

m m

q

VqU
Q

S G ,              (7) 

 
where \=m mQ L P . Let card( ) Q=m mQ . 
In the one-dimensional case, the 
parallelepiped, cells, and subcells are intervals. 
The way of  selecting these intervals for a 
given spectral support is discussed in [2]. For 
our case, we will skip this discussion, for 
brevity, and we will simply assume that the 
spectral support is given by (6). 
Let maxP

∈
= m

m M
P . We consider the MSS 

represented in Fig. 2. The filters 
( ), 1..iH i P=f  are known, while the filters 

( )iY f  must be determined such that 

0 ( ) ( )X X=f f , if it is possible. The input-
output relation is 
 

0

0
1

( )

ˆ( ) ( ) ( ),
P

k k
k

X

V X H Y
=

=

− −∑ ∑
n

f

f Vn f Vn f
 (8) 

 
where 
 

( ), supp( ( ))ˆ ( )
0, otherwisek
H X

H
∈⎧

= ⎨
⎩

f f f
f ,    (9) 

 

and V0 is the volume of Χ0. The summation 
index n runs over NΆ .  The condition 

0 ( ) ( )X X=f f  is true if 
 

0

01

1ˆ ( ) ( ) , .
P

k k
k

H Y
V

δ
=

− = ∈∑ nf Vn f f C  (10) 

 
We can rewrite (10) by using only translations 
of the fundamental subcell: 
 

01

1ˆ ( ) ( ) ,

, , .

P

k k
k

H Y
V

δ
=

+ + =

∈ ∈

∑ s
rf Vr f Vs

f r s0C L

  (11) 

 
We split now the system (11) in a maximum of 
card( )M  systems, one for each subcell, by 
taking into account (9), as follows 
 

01

1

1ˆ ( ) ( )

ˆ ( ) ( ) 0

, , .

P

k k
k
P

k k
k

H Y
V

H Y

δ
=

=

+ + =

+ + =

∈ ∈ ∈

∑

∑

r
p

m m m

f Vp f Vr

f Vp f Vq

f p qG P Q

   (12) 

 
We define the following matrices: 
 

ˆ|| || || ( ) ||,

|| || || ( ) ||,

|| || || ( ) ||,

, , 1.. , .

k k

k k

c
k k

a H

b Y

c Y

k P

= = +

= = +

= = +

∈ ∈ = ∈

m p

m p

m q

m m m

H f Vp

Y f Vp

Y f Vq

p q fP Q G

    (13) 

 
For every vector index, the lexicographic order 
is taken. The dimensions of these matrices are 
P P×m , P P× m , and P Q× m  respectively. The 
first line in (12) becomes: 
 

0

1
PV

=
mm mH Y I .                  (14) 

 
If Hm has full row rank, then 
 

1 1
0V − −=m mY H ,                     (15) 
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where 1−
mH  is a left inverse for Hm. Then c

mY  
can be any matrix such that 
 

,
c

P Q=
m mm mH Y 0 .                 (16) 

 
By taking the inverse Fourier transform of (8) 
with 0 ( ) ( )X X=f f , the following sampling 
expansion can be obtained after some 
straightforward calculations: 
 

1 1

1

( ) (( ) ) ( ( ) ),
P

T T
k k

k

x g y− −

=

= −∑∑
n

t V n t V n    

(17) 
 
where x(t), gk(t), and yk(t) are the inverse 
Fourier transforms of X(f), Gk(f), and Yk(f) 
defined in Fig. 2. 
We obtained the following 
Theorem. A finite energy, complex valued, 
continuous signal, defined on  Nℜ , which has 
a spectral support in the shape of (6), sampled 
with the MSS of Fig. 2, can be interpolated 
from its samples taken at points (V-1)Tn 
according to (17), if the matrix Hm defined in 
(18) has full row rank for each m for which the 
set Πm is not empty. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3 Discussion 
The Nyquist rate, i.e. the smallest uniform 
sampling rate that guarantees no aliasing, is, in 
our case, the volume of  Χ, V(C). This can be 
much larger than the Landau (minimum) 
sampling rate, equal to the Lebesgue measure 
of the spectral support. We used a sampling 
rate equal to 0( )PV C . If all subcells where 
completely occupied, a minimum sampling 

rate would have been ( )P V
∈
∑ m m
m M

G . The 

ratio of the minimum sampling rate to the 
actual one gives the sampling efficiency. For 
P P=m , a unit sampling efficiency is obtained, 
and then the solution (15) is unique; this case 
is treated in [6]. In general P P<m , and 
several solutions are possible, all providing 
equivalent sampling expansions (17). The 
efficiency is subunitary, but some evidence in 
the one-dimensional, multicoset sampling 
suggests that a particular solution might be 
chosen to minimize the sensitivity to errors [2]. 
In the present approach, every direction in Χ 
has been undersampled, and each side of the 
cell Χ0 was parallel to a side of the 
parallelepiped Χ. This has been achieved by 
choosing the sampling pattern in the time 

domain as ( )1 T
V − n . A more general, and 

sometimes more useful pattern can be chosen 
[6,7], an issue we will address elsewhere. 
 

f2 

f1 

v2 

v1 

Χ 

Χ0 

Fig. 1. Spectral support in two dimensions. 
The marked subcells belong to Σ. Subcells 
marked with the same pattern correspond to a 
given Πm. 
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Fig. 2. Multichannel sampling scheme 
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4 Conclusion 
We presented a sampling theorem for 
multiband, multidimensional signals in terms 
of the multichannel sampling scheme 
introduced by Papoulis, and consisting of two 
continuous time filter banks, one for analysis 
and one for reconstruction. The frequency 
responses of the analysis filters must satisfy a 
certain independence condition in order for the 
reconstruction to be possible. We obtained a 
generalized sampling expansion in terms of the 
sampled outputs of the analysis filters. 
We generalized in this way the one-
dimensional multicoset sampling. The 
sampling density is below the Nyquist rate and 
generally above the Landau rate. Sampling at a 
rate higher than the minimum allowable one 
provides flexibility in choosing the 
reconstruction filters, so that a minimization of 
sensitivity to errors might be possible, similar 
to the cited one-dimensional case. 
We undersampled each direction in the signal's 
spectral support. Other sampling patterns can 
be considered, a problem left for future work. 
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