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Abstract: - A simple discrete recurrent neural network model is considered. The local stability is analyzed with 
the associated characteristic model. In order to study the quasi-periodic orbit dynamic behavior, it is necessary to 
determinate the Neimark-Sacker bifurcation. In the case of two neurons, one necessary condition that produces 
the Neimark-Sacker bifurcation is found. In addition to this, the stability and direction of the Neimark-Sacker are 
determined by applying the normal form theory and the center manifold theorem. An example is given and 
numerical simulation are performed to illustrate the obtained results. The phase-locking is analyzed given some 
experimental result of  Arnold Tongue in determinate weight configuration. 
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1   Introduction 
The purpose of this work is to present some results 
related to the analysis of the dynamics of a discrete 
recurrent neural network. The particular model of 
network in which we are interested is the Williams-
Zipser network, also known as Discrete-Time 
Recurrent Neural Network (DTRNN) in [8]. Its state 
evolution equation is 
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where 
  
  )(kxi  is the ith neuron output 
 )(kum  is the mth input of the network 
  imin ww ',  are the weight factors of the neuron outputs, 
network inputs and   iw ''  is a bias weight. 
 
 )(⋅f  is a continuous, bounded, monotonically 
increasing function such as the hyperbolic tangent. 
 
From the point of view of the dynamical theory it is 
interesting to study the equilibrium or fixed points. 
These points do not change in time. Their character 
or stability is given by the local behavior of nearby 

trajectories. A fixed point can attract (sink), repel 
(source) or have directions of attraction and repulsion 
(saddle) of close trajectories [5]. Next in complexity 
are periodic trajectories, quasi-periodic trajectories or 
even chaotic sets, each with its own stability 
characterization. All these features are similar in a 
class of topologically equivalent systems [2]. When a 
system parameter is varied the system can reach a 
critical point in which it is no longer equivalent. This 
is called a bifurcation [12], and the system will 
exhibit new behaviors. 
With respect to discrete recurrent neural networks as 
systems, several results about their dynamics are 
available in the literature. The most general result is 
derived using the Lyapunov stability theorem in 
Marcus and Westervelt [1] and it establishes that for a 
symmetric weight matrix there are only stable 
equilibrium states. These are fixed points and period 
two limit cycles. In this paper, are also given 
conditions under which there are only fixed-point 
attractors are given. More recently, Cao [7] has 
proposed another condition less restrictive and more 
complex. Wang [11] describes one interesting type of 
trajectories, the quasi-periodic orbits.  Passeman [4] 
obtains some experimental results such as the 
coexisting of the periodic, quasi-periodic and chaotic 
attractors. In other hand, In [9] give the position, 
number and stability types of fixed points of a two-
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neuron discrete recurrent network with nonzero 
weights are investigated. 
There are some works that analyse the hopfield 
continous neural networks [6, 3] like [7, 10], in this 
paper shown the stability of hopf-bifurcation with 
two delays.  
This paper is divided into three sections. In the 
section 2, the local stability of the Williams-Zipser 
neural network and the necessary condition that 
generate the Neimark-Sacker bifurcation are 
analysed. In the section 3, the condition of the 
stability of the bifurcation is established. We can 
conclude that it depends on the derivatives relation of 
activation function on zero coordinate.  In the section 
4, some simulations of quasi-periodic orbit with the 
tangent hyperbolic as activation function are shown. 
In the last function section we explain the Arnold 
tongue, and we calculate some simulation with four 
different configuration, and we show that the periodic 
orbit has the similar probably like the quasi-periodic 
orbit. 
 
 
2   Local Stability Analysis 
 
In the development below two-neurons neural 
network are considerate. It is usual that the activation 
function is a sigmoid function or tangent hyperbolic 
function. In order to simplify the notation we redefine 
(x1, x2) as (x, y).  
Firstly, the analytical condition of fixed point can be 
shown. 
 
 )( 1211 ywxwfx +=  (2.a) 
 )( 2221 ywxwfy +=  (2.b) 
 
In this mapping the elements of the jacobian matrix in 
the fixed point (x, y) are 
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The associated characteristic equation of the 
linearized system evaluated in the fixed point is 
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where w11,w22 and |W| are the diagonal elements and 
the determinant of the matrix weight, respectively. 
We can define new variables  
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The eigenvalues of the characteristic (4) are defined 
as 
 2

2
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The Neimark-Sacker bifurcation appears when two 
complex conjugate eigenvalues reach the unit circle. 
It is easy to show that the limit conditions are 
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N e im a r k - S a c k e r   b i f u r c a t io n  
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Fig. 1. The stability regions and the bifurcation lines 
in the fixed point (0, 0). 
 
The boundaries between the regions shown in Fig. 1 
are the bifurcations, that is to say, the limit zones 
where the fixed point changes its character. The 
Neimark-Sacker bifurcation represented by the line 
|W|=1 in Fig. 1. The necessary condition that produce 
the Neimark-Sacker bifurcation can be stated. 
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Lemma 1. Suppose that activation function  f∈C2, 
bounded, monotonically increasing . Then Neimark-
Sacker bifurcation only appears when w12w21<0. 
 
Proof: 
The methodology  to prove the theorem is considerate 
the constricted equation corresponding to the 
Neimark-Sacker bifurcation and extract it a condition 
respect to the non diagonal weights.  Following it is 
analysed the different share of the F  function 
considering the non diagonal weights condition and 
we will calculate the different configuration respect 
to the number of fixed points. 
Assume that one fixed point (x0, y0) produce the 
Neimark-Sacker bifurcation then  

1=YXW 00  
 22 022011 <+<− YwXw  (9) 
 
where || || is the absolute value and 
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Taking into account the last expressions, the limit  
curves in the plane (X0, Y0) are 
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If it is consider the bifurcation condition in (10) and 
the fact that f is monotonically increasing |W| is 
positive, because of this, the curves present the 
behavior in Fig. 2. In order to obtain the curves 
intersection points, the following second order 
equation can be stated  
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This it only possible if w12w21<0. � 
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Fig. 2. Curves that define the bifurcation Neimark-
Sacker conditions with |W|=1, w11=2, w22=0.25. 
 
3 Direction and stability of bifurcating 

quasi-periodic orbit 
 
In order to determinate the direction and stability of 
Neimark-Sacker bifurcation it is necessary to use the 
center manifold theory [12]. The center manifold 
theory demonstrate that the mapping behavior in the 
bifurcation is the complex mapping below 
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The parameter a(0) is [12] 
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where E is the identity matrix, B and C are the second 
and third derivative terms of  the mapping Taylor 
development, respectively, and p, q are the 
eigenvector Jacobian matrix and its transpose, 
respectively. These vectors satisfy the normalization 
condition 
 
 1, =qp  (15) 
 
 
The zero in the argument of the coefficient a 
represents the critical parameter of the system where 
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produce the bifurcation takes place. The a(0) sign 
determinate the bifurcation direction. When a(0) is 
positive an unstable quasi-periodic orbit (transition 
subcritical) disappears, and in opposite case, appears 
a stable quasi-periodic orbit (transition supercritical). 
 
In the neural network mapping,  p and q are 
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The Taylor development terms are 
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We assume that the second derivative of the 
activation is zero as the hyperbolic tangent function. 
Consequently, 0≡B and it is only necessary to 
calculate the third derivative evaluated in the 
eigenvector q and it conjugate. Using the expressions 
(14), (16), (17), and the critical eigenvalues, the 
relation below can be obtained  
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with the equation (9) 
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Taking into account the necessary bifurcation 
condition w12w21<0, the quasi-periodic orbit stability 
only depends on the relation between the sign of the 
first and third derivatives of activation function 
evaluated in zero. When the activation function is the 
hyperbolic tangent, the bifurcation is supercritical and 
the quasi-periodic orbit is always stable. 
 
4 Simulation 

 
In general, the follow matrix weight is used 
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With the matrix above the parameter α  produces the 
Neimark-Sacker bifurcation when it changes from a 
negative value to a positive one.  
 
In order to show the application of the result that has 
been obtained, the hyperbolic tangent function is 
considered. This function is monotonically 
increasing, the coordinate in the origin and second 
derivative are zero. Using the result of the previous 
section it can be said that the quasi-periodic orbit is 
always stable independently on the parameters. As an 
example, consider the weight matrix (22) with 
θ0=0.1451. Then, with α=-0.05 in Fig. 3. (a) shows 
that the origin is asymptotically stable. The Neimark-
Sacker bifurcation occurs when  α=0. As 
consequence of this the origin loses its stability. 
When α=0.05 the origin is unstable and a stable 
quasi-periodic orbit appears.  

2005 WSEAS Int. Conf. on DYNAMICAL SYSTEMS and CONTROL, Venice, Italy, November 2-4, 2005 (pp586-591)



 

 

 

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

x

y

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

y 

x

y 

x
(a)

(b)  
Fig. 3. The quasi-periodic orbits with the following 
parameters; θ0=0.1451. (a): α=-0.05 ; (b): α=0.05, 
a(0)=-1. 
 
 
5    Study of Arnold tongue 
 
Near the Neimark-Sacker bifurcations, it can be 
observed the phenomenon of phase locking [12]. It 
is characterized by the transformation of the quasi-
periodic orbits originated after the bifurcation into 
periodic orbits. In general, we can associate to a 
periodic or quasi-periodic orbit a number, called the 
rotation number. Its definition is  
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This number is estimated considering the rotation 
around the origin 
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When the eigenvalues are on the unit circle and their 
phase can be expressed as a rational number (say q/p) 
multiplied by 2π the orbit is periodic. In general, this 
number can be irrational and this results in a quasi-
periodic orbit. The rotation number estimates this 
quantity and it indicates that in p mapping iterations 
the state completes q revolutions if it is rational. Next 
to the unit circle there can be regions where this 
number is constant and rational, surrounded by zones 
in which is irrational. These zones are called Arnold 
tongues [8], due to their characteristic shape, 
collapsing to the corresponding point of rational value 
on the unit circle. 
 
We want to estimate the mains arnold tongue in the 
mapping equations (2.a) and (2.b). In the beginning it 
has got four parameter of the system, and we have 
fixed two parameter (w11, w12) in each Fig. 4, and 
change the weight determinant and the diagonal 
element of the weight matrix sum.  

 
In the fig. 4 it can show the preponderance of the 
period-four orbits (1/4 number rotation) in front of 
to the rest of period orbit. In other hand, it can 
extract to the figure that the probability of the quasi-
periodic orbit present is similar to the period orbits 
ones. Also, in the intersection between different 
arnold tongues, it can find experimentally the 
coexistence of the different cycles periodic orbits, in 
this case there are several rotation numbers depend 
on the initial point used to calculate them.  
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Fig. 4. The Arnold Tongues main representation 
with its rotation number. a) w11= 0.217 y w12=0.050 
b) w11=0.100 y w12=10.000. 

 
6   Conclusion 
In this paper a simple discrete recurrent two-neuron 
network model has been considerated. We have 
discussed the fixed points stability. We have shown 
the quasi-periodic orbits associated with the 
Neimark-Sacker bifurcation. In the limit, this orbit 
describes closed invariant trajectories. We also 
studied also their stability, and found them stable by 
applying normal form theory at their bifurcation.  In 
addition to this, the necessary condition to produce 
the Neimark-Sacker bifurcation has been stated. We 
show the phase-locking phenomena when the tangent 
hyperbolic function show the Arnold Tongue 
function where appear the periodic orbit  with 
different periodic.  
 
The two-neuron networks discussed above are quite 
simple, but they are potentially useful since the 
complexity found in these simple cases might be 
carried over to larger discrete recurrent neural 

networks. There exists the possibility of generalising 
some of these results to higher dimensions. 
 
 
References: 

 
 

[1.] C. M. Marcus and R. M. Westervelt, Dynamics 
of Iterated-Map Neural Networks, Physical 
Review A, 40, (1989), pp: 501-504 . 

[2.] C. Robinson, Dynamical Systems. Stability, 
Symbolic Dynamics, and Chaos. Ed. Inc. Press 
CRC, 1995. 

[3.] D. W. Tank, J.J. Hopfield, Neural computation by 
concentrating information in time, Proc. Nat. 
Acad. Sci. USA, 84, (1987), pp: 1896-1991. 

[4.] F. Pasemann. Complex Dynamics and the 
structure of small neural networks, In Network: 
Computation in neural system, 13(2), (2002), pp: 
195-216. 

[5.] J. Hale, H. Koςak, Dynamics and Bifurcations, 
Springer-Verlag New York Inc. , 1991. 

[6.] J. Hopfield, Neurons with graded response have 
collective computational properties like those of 
two-state neurons, Procs. Nat. Acad. Sci. USA 81, 
(1984), pp: 3088-3092. 

[7.] Jine Cao,  On stability of delayed cellular neural 
networks,  Physics Letters A, 261(5-6), (1999), 
pp: 303-308. 

[8.] R. Hush and Bill G. Horne, Progress in supervised 
Neural Networks, IEEE Signal Processing 
Magazine. January (1993). 

[9.] Tino et al. Attractive Periodic Sets in Discrete-
Time Recurrent Networks (with Emphasis on 
Fixed-Point Stability and Bifurcations in Two-
Neuron Networks).Neural Computation (2001), 
13(6), pp: 1379-1414. 

[10.] X. Liao, K. Wong, Z. Wu, Bifurcation analysis 
on a two-neuron system with distributed delays, 
Physica D, 149, (2001), pp: 123-141. 

[11.] X. Wang, Discrete-Time Dynamics of Coupled 
Quasi-Periodic and Chaotic Neural Network 
Oscillators, International Joint Conference on 
Neural Networks, 1992. 

[12.] Y. A. Kuznetsov, Elements of Applied 
Bifurcation Theory, Springer-Verlag, New York 
Inc., Second Edition, 1998. 

2005 WSEAS Int. Conf. on DYNAMICAL SYSTEMS and CONTROL, Venice, Italy, November 2-4, 2005 (pp586-591)


