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Abstract: - In this paper we estimate the joints trajectories of a robot, when a fixed number of points, for the 
end-effector trajectory, are assigned. In particular we compare two methods. The first method utilizes the idea 
of approximating the graphics of a continuous function by polygonal lines, employing a system of functions, 
obtained by integrating the Haar wavelets. The second method is based on cubic spline interpolation.  
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1 Introduction 
In the recent statistical literature, the implementation 
of interpolation techniques is an important task. In 
particular, Wavelet theory is almost indispensable 
when the function to interpolate is not-smooth (e.g., 
see [1] or [2]). On the other side, other techniques 
are used when the data to interpolate are quite 
regular, such as splines [3]. However, the problem 
of finding an optimal technique, when the function 
is only continuous, is again discussed. In fact, in 
these cases, the problem of approximating a 
function, by step functions, appears clearly to be 
inappropriate, such as describing it by polynomials. 
A possible answer to the question is given by 
Schauder (see [4] or [5]). He proposed to 
approximate the graphics of functions, by lines, 
obtained by integrating the curves of the Haar 
Wavelet system. 
In our work we compare splines and Schauder 
methods, in order to interpolate empiric trajectories 
of the joints, in a robot; we consider the case in 
which some positions, concerning the end-effector 
trajectory, are fixed. This is a typical problem of the 
recent robotic literature (e.g., see [6]).  
 

 
2 The model 
Let us consider the end-effector motion, in a robot 
with n joints (and, therefore, n – 1 links). Suppose 
that the end-effector position P(ti) (i ∈{1, 2 ,…, N}) 
at time ti must satisfy must interpolate the points Pi 
+ ξi (i ∈ {1, 2 ,…, N}), where ξi are iid normal 
random variables whose mean is zero and whose 
variance is relatively small. In this case, for any j 
∈{1, 2 ,…, n } we calculate the position of the j-th 
joint. In this way let qji be the position of the j-th 
joint when the end-effector is at Pi + ξi. Therefore 
we calculate the minimum duration in order to 
transit from Pi + ξi to  Pi +1 + ξi+1. In particular, for 
any j, we must unify qj1 , qj2 ,…, qjN, with a 
interpolating method. In particular, we must choose 
the method in order to preserve this value of the 
duration. Furthermore, we suppose that the motion 
law of the end-effector has at least a discontinuity in 
its derivative. This means that also the joints motion 
will not be smooth. In fact, for example, let us 
consider  the case n = 2, in which the end effector 
law is two-dimensional P(t) = (x(t), y(t)) and it is 
described by the equations 
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x = l1 cosθ1 + l2 sin(θ1 + θ2) 
 

y = l1 sinθ1 + l2 sin(θ1 + θ2), 
 

where li is the length of the i-th link, θ1 is the angle 
comprised between the x axis and the first link and 
θ2 is the angle comprised between the two links. In 
this case we obtain 
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These relations tell us that if x(t) or y(t) are not 
smooth at a certainly time, so it is also the motion 
law of the joints. 
 

 
3 Mathematical background 

 
 

3.1 Wavelet  interpolation 
Consider the two function defined on [0, 1]: 
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ψ (mother wavelet) has its first moment equal to 
zero; ϕ is (father wavelet) orthonormal to ψ, 
according to the L2 norm. Note that the set of all the 
functions, obtained by translating and dilating them, 
is complete and orthonormal: it is called Haar 
wavelet system. This system is utilized in order to 
approximate not regular functions square-integrable. 
A derivate method, valid for functions more regular, 
proposed by Schauder, consists substantially in 
replacing Haar system by their primitives (see [4] or 
[5]). More specifically, let    
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be the function obtained by integrating ψ between 0 
and t. Furthermore for any integer k let, 
 

∆n(x) = ∆(2 jx − k) ,    
 

for  j > 0, n = k + 2 j and 0< k < 2 j . 
Note that, if j = 1, then  k = 1, if j = 2, then k ∈ {2, 
3},… and, if j = j1, then k ∈ {2 j

1
 − 1 ,…, 2 j

1
 }. 

Furthermore, let 
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be the function obtained by integrating ϕ between 0 
and t. Now, consider a function f defined on [0, 1]. 
By Parseval theorem, we have that  
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where c0 = f(1) − f(0) and 
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For this reason, the system {1, ∆0, ∆1,…, ∆n} is a 
Schauder basis ([7] or [8]) for the Banach space C[0, 
1] of the continuous function on [0, 1].    
 
 
3.2   Spline interpolation 
A spline is a constructed of piecewise polynomials  
which pass through a set of given points. In 
particular, the cubic spline, for a set of n + 1 points 
y0, y1, y2,…, yn, is composed by pieces of the form 
 
                   Yi (t) = ai + bi t + ci t2 + di t3,               (2) 
 
where  t ∈ [0, 1] and i ∈ {0, 1, …, n − 1}. We 
require that, for any interval [yi, yi +1],   
 
   Yi (0) = yi = ai ,  Yi (1) = yi + 1 = ai + bi + ci + di,  (3) 
 
             Y’i (0) = bi ,     Y’i (1) = bi + 2ci + 3di.       (4) 
 
Furthermore, for any i ∈ {1, …, n − 1}, we must 
have 
 
            Yi − 1 (1) = Yi (0),    Y’i − 1 (1) = Y’i (0)         (5) 
 
and  
 

2005 WSEAS Int. Conf. on DYNAMICAL SYSTEMS and CONTROL, Venice, Italy, November 2-4, 2005 (pp351-356)



                           Y’’i − 1 (1) = Y’’i (0).                     (6) 
 
Finally, we require the boundary conditions 
 
                         Y’’0(0) = Y’’n (0) = 0.                     (7) 
         
  
From conditions (3)-(4), we obtain 
 

 ai    =  yi, 
 

ci = 3(yi + 1 − yi) − 2bi − 2bi + 1 
 

and 
di = 2(yi − yi + 1) + bi + bi + 1 

 
Finally, from conditions (5)-(7) we obtain that the 
vector (b0, b1,…, bn) satisfies the following 
tridiagonal system   
 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
−

−
−
−

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−−

1

2

13

02

01

1

2

1

0

...
3

...

21
141
..................

141
141

12

nn

nn

n

n

yy
yy

yy
yy
yy

b
b

b
b
b

. 

 
 

4 Application of the interpolation 
methods in studying trajectory 
regularity 

Let us suppose that the position f(t) of the i-th joint 
is a function of the time, between 0 and 1. In fig.1 is 
depicted the graphic of (t, f(t)), formed by 26 +1 
points, derived from a not regular trajectory of the 
end-effector.  
Suppose that only h = 25 +1 equidistant points of the 
trajectory are known (Fig.2). In this case, by 
equation (1), we may know an approximation fWAV(t) 
of f(t), on 2h +1 = 26 +1 points, by utilizing the 
Shauder system. We must suppose that 12 j  + 1 = h. 
At the same time, we may obtain an approximation 
fSPL(t) of f(t) by utilizing the cubic spline 
interpolation. Fig.3 shows the wavelet interpolation 
for f on 2h + 1 points. As showed by Fig. 3, 
qualitatively the wavelet interpolation is better than 
cubic spline (Fig. 4).  
 

  

 
Fig.1 Original trajectory (h = 26 +1). 

 
 

 
Fig.2. Known trajectory (h = 25 +1). 

 
 

 
Fig.3. Reconstruction of the trajectory by Wavelet  
interpolation (h = 26 +1).  
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Fig.4. Reconstruction of the trajectory by cubic 
spline interpolation (h = 26 +1). 

 
 

 
Fig.5. Detail of the test function by Wavelet  
interpolation (h = 26 +1): the reference parameters 
are a = 0.5 and b = 0.6. 
 
 

 
Fig.6. Detail of the test function by cubic spline (h = 
26 +1): the reference parameters are a = 0.5 and b = 
0.6. 

 

 
5 Efficiency of the wavelet 

interpolation 
In order to test the performance of the Schauder 
interpolation, we consider the test function of the 
form 
 

f(t) = t2 + a| t − 0.6|−b,  t ∈[0, 1]. (8) 
 

The Figg. 5-6 shows that the maximum of the 
function, estimated by means of wavelet method, is 
higher than the other one estimated by spline. 
According to this first observation, the wavelet 
interpolation appears more appropriate: in fact f(t)  
by (8) diverges as t tends to 0.6.  
Now, set l be the arclenght of the original signal, 
supposed composed by 26 + 1 points; furthermore let 
lWAV and lSPL be  the arclenght of the graphics (2h 
points) calculated respectively by wavelet and by 
spline interpolation, starting from a known graphic 
of h = 25 + 1 points. 
Now, let us estimate the quantities 
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as a, b and p varying. Figg. 7-9 show that, for any a 
and p and for b ≅ 1, ep is positive. The meaning is 
summarized as follows: when the function is “not 
smooth” enough the wavelet interpolation must be 
preferred to the spline one.  
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a = 0.005 
 

 
a = 1 
 

 
a = 300 
 
Fig.7. Plot of e0, as a function of b, for some value of 
a.  
 
 
 
 

 a = 0.005 
 

 
a = 1 
 

 
a = 300 
 
Fig.8. Plot of e1, as a function of b, for some value of 
a. 
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p = 2 
 

 
p = 3 
 

 
p = ∞  
 
Fig.9. Plot of ep, as a function of b, for some value of 
p and for a = 1. 
 
 
 

 

6   Conclusions 
We proposed a methodology in order to interpolate a 
set of data points when their graphics are not 
smooth. It is based on a Schauder basis derived by 
integrating the Haar wavelet system. Subsequently,  
the desired interpolated function is obtained as a 
linear combination of the element of such basis: the 
combination coefficients are function of the data set 
points assigned. In particular, the proposed method 
seems to be efficient in the cases in which the data 
set to interpolate is not smooth. Our attention 
focuses out on the problem of estimating the end- 
effector and joints trajectories, in a robot, having 
supposed  that only a limited set of the end-effector 
trajectory is note.       
Starting from the results derived from this work, 
with reference to  the model described on paragraph 
2, it will be necessary to investigate further in order 
to make the estimated end-effector law P(t) more 
consistent.  
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