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Abstract: Current approaches in signal processing for pulse detection (radar, communications, etc.) or, more
general, for time series characterization, use domain transformations for frequency related information
concentration. Those transformations allow extracting information that can be distinguishable (in the frequency
domain) from noise. Wavelet transforms are a step forward because they work in the frequency domain keeping
the time domain information. Wavelets are usually described in two main sets: continuous wavelet transforms
and discrete wavelet transforms. Although they share mathematical motivation, both transformations have
different algorithms and properties. The property we will focus on is time invariance. Continuous wavelets are
time invariant, but they are also very expensive to calculate. Real time systems will find it hard to process all that
information with enough accuracy. On the other hand, uniformly sampling the translation parameter as input to
the discrete wavelet process destroys this time invariance. In this paper we will introduce experimental results
that show an alternative way to generate a time invariant representation of a signal using discrete wavelet
transforms. This algorithm upgrades the computational cost-efficiency of pulse detection capability with respect
to the basic approach.

Key-Words: - Support Vector Machine, wavelet, computational complexity, signal detection, signal-to-noise
ratio, probability of detection.

1   Introduction
Signal processing (and filtering) is an attempt to find
a better expression of some information included in a
bigger set of data, either by reshaping it or filtering
out selected parts (those parts are named as noise).
Wavelet transform is one of the most successful
methods in signal de-noising processes. With the

wavelet transform a time series can be viewed in
multiple resolutions. Each resolution reflects a
different frequency. The wavelet technique takes
averages and differences of a signal, breaking the
signal down into spectrum.
Wavelets applications [17] include detection of long
term evolution, suppression of mixed signals,
compression and de-noising, etc. In [14] a signal



detection algorithm is proposed. It is based on
comparing the component with maximum absolute
value of its Discrete Wavelet Transform (DWT)
coefficients, for a given scale, with a certain
threshold. In [4] it is studied a linear Support Vector
Machine as an alternative algorithm to overcome
input SNR dependence.
On previous work [5,11] the authors have developed
an algorithm for pulsed signal detection. This
algorithm could be applied to several real-life
problems like radar, signal anlysis or time series
characterization, obtaining a process gain better than
using previous approaches with wavelets [14].
Wavelets are generated by the scale and translation of
a single prototype function called wavelet mother:
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where ψ  is the mother wavelet, s is the scaling factor
and τ  is the translation factor. They are building
blocks of wavelet transform for different scales and
translations, just as trigonometric functions of
different frequencies are building blocks of Fourier
transform [12].
In the case of discrete wavelet transform (DWT), τ
and s also take discrete values, given by
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A particular class of wavelets are orthonormal
wavelets which are linearly independent, complete
and orthogonal. This means that there is no
“redundant” data from the original signal in more than
one wavelet. In [3] Daubechies developed conditions
under which wavelets form orthonormal bases. Thus
the Discrete Wavelet Coefficients are the inner
products of the signal and wavelet function. That is:
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In [7] Mallat developed a fast wavelet algorithm based
on the pyramid algorithm developed by Burt and
Adelson [1]. The basic components at each stage of
the pyramid are two analysis filters: a low-pass filter h
and high-pass filter g, and a decimation by two
operation.

2   Continuous vs Discrete Wavelet
Wavelet transforms are usually described in two main

sets: Continuous wavelet transforms and discrete
wavelet transforms. In the first set, the input f(n), the
translation factor τ  and the scale factor s are
continuous functions, and its transformation formulas
(1) are described in the previous section. This set
includes dyadic wavelets
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for j being a natural number, where only the scale
factor is discretized and the input f(n) is still a
continuous function. It has most of the properties of
basic continuous wavelets but its scale constraints
allow an easier implementation of the algorithm.
On the other hand, discrete wavelet transforms have
discrete values both for the input signal f(n) and the
scale and translation factors. The fast orthogonal
wavelet transform algorithm is used to calculate the
coefficients that represent the wavelet basis functions
decomposition. But in the input signal discretization
and decimation process the translation-invariant
property in continuous wavelet transforms is
destroyed [10]. There is a loss of information
throughout the whole process that avoids perfect
reconstruction of the input continuous signal. There
are several algorithms that try to introduce the
translation invariance property on DWT. They usually
involve either high computational resources or
representation redundancy [2,6,8,9,13].
To obtain a quasi translation invariant representation
using discrete wavelet transforms we should increase
the discretization rate. At the limit, when this rate is
close to infinite, then the discrete wavelet transform
can be similar to a numerical approximation of a
dyadic wavelet, which is translation-invariant. Given
the sampling interval s • u0 of a given scale s (if u0 is
the discretization rate) and the rate of variation of the
coefficients of the transform for that scale (f • )(tsψ ),
if the sampling interval is large with respect to the rate
of variation of the output coefficients, then it is easily
observed that there is no relationship between
translated functions transformations, and we will
surely lose useful reconstruction information for a
later pattern recognition problem [10].
On real-life engineering, increasing the sampling rate
is not always an easy task. It usually depends on
expensive hardware resources that may be unstable for
state-of-the-art sampling rates.
In this paper we shall try an alternative way for
obtaining all the signal information in the wavelet
coefficients using software processing only, described
in the next sections.



3   Discrete Wavelet Cycle
Suppose we have a sampled input signal, H samples
size, using some appropriate u0 sampling rate. There is
a N-samples pulse, N≤H, hidden inside white
Gaussian noise all over the H-samples window. Our
objective is to detect and locate the pulse within the
window (see [5] for a detailed description). This is a
very common problem for radar as well as
communications signal processing.
We are able to generate a machine-learning
representation that uses the wavelet coefficients set for
a N-sample window to classify it either as having a
complete N-samples pulse or not. [4,11]. We are also
able to generate a similar machine-learning
representation that classifies a N-samples window
either as having a M-samples piece of the pulse and
noise on the m remaining samples (m=N-M), or not.
Figure 1 shows an example.

Fig. 1: Input signal windowing (somehow exaggerated
for visibility purposes). The x-axis is time and y-axis
is power. Window 1 is 0-shift and window 2 is m-
shift.
If the wavelet transformation function were
translation-invariant, then both machine-learning
classifiers should also be somehow translated (for
instance, if we use a linear classifier we might expect
its coefficients to be translated), and most important,
they will have very similar performances. On the
experiments section we shall see performance greatly
differ between incomplete pulse windows.
The output of each m-shift classifier is a Gaussian
random variable. Its mean and deviation for both
positive and negative examples will provide the
performance of the classifier in terms of probability of
detection (Pd) and probability of false alarm (Pfa). In
figure 2 the correlation coefficients for a subset of
these random variables with respect to the complete
pulse window (0-shift) is shown for the setup
described on the experiments section. A high degree
of uncorrelance can be observed between very close
variables, i.e. between wavelet representations whose
input data is less than 0.5% samples away one with
respect to the other.
In this figure we can also observe there is a cycle in
the correlation coefficients 16 samples long. This
value is directly related to the decimation step in the

discrete wavelet transform algorithm. The scale used
in the experiments was s = aj = 24.
The correlation coefficients tell us that the different
random variables (we call them sources) carry
different amount of information, and, as we shall see
on next section, they carry complimentary
information.
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Fig. 2: Cross correlation coefficients between 0-shift
random variable and m-shift random variables with m
∈ [0,47] in a 1024 sample pulse.

4   Multiple sources classifier
Each m-shift classifier Gaussian variable has some
discriminating information. If all the single sources
have some amount of discriminating information that
is not correlated (being translation-variant), then we
might expect a joint classifier to be a better
discriminator than any of the single sources alone. We
define a k-multiple-source classifier as a linear
classifier having as input k single-source Gaussian
variables for a given input signal (positive examples)
and noise (negative examples). Obviously, each single
source corresponds to a different mi value trying to
detect the same event: the 0-shift window contains or
not the complete pulse.
One of our objectives is to analyse the maximum
improvement that can be achieved using multiple-
source classifiers. The correlation cycle is directly
related to the scale, so a maximum number for k is
easily determined. Nevertheless, the improvement
obtained every time we add a new source to the
classifier is not linear.
Our second objective is to find the value of k having
the best relationship between available computing
resources and classification performance. The most
expensive step in this algorithm is the wavelet
calculation for each source, which is O(H) at a
sampling rate u0. This complexity increases linearly
with the inverse of the sampling rate. A new sampling
rate u1 = u0 • aj would generate the same computing
needs as aj wavelet calculations having sampling rate
u0.



But as k < aj without a significant loss on
performance, we are able to decrease up to one order
of magnitude the required computational resources
having a similar classification performance than a
single wavelet processing with sampling rate u1.
Therefore, we could assert that the advantage obtained
by increasing the sampling rate can be achieved by
software processing using around one order of
magnitude less computational resources.

5   Experimental results
In the experiments shown in this paper we have used
the same setup as in previous work [11]. The main
features of this setup are: Daubechies 5 mother
wavelet calculated on a 1024 samples chirp pulse,
using scale d4. We used Support Vector Machines
[15] as the machine-learning tool, with a linear kernel
(i.e. a linear classifier). The use of SVM on this paper
has not been deemed relevant, because the special
properties we used form this state-of-the-art algorithm
were already discussed in [5]. However, the
implementation of SVM as the machine learning tool
provides better performances than any other Neural
Network learning algorithm like those proposed by
[16]
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Fig. 3: The mean difference axis transformation. The
y-axis is Pd while x-axis is the mean difference (see
text).

In the figures shown in this section, the performance
measure is not described in terms of probability of
detection, but in a closely related function. We define
a “mean difference” as the distance between the
means of the signal Gaussian distribution and noise
Gaussian distribution. We translate the Pd obtained
through the machine learning process to two different
distributions with deviation 1 for a Pfa = 10-3. It is just
a simple y-axis scale change. The reason for this
change is to have a better description of the effect of
using multiple sources in limit values, as when the
probability of detection approaches 100%. For
instance, if the mean difference is 0, then Pd = Pfa.

Figure 3 shows the relationship between both
measures.
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Fig. 4: Performances for each source alone form 0-
shift to 47-shift (x-axis) measured as the mean
difference (y-axis).
In figure 4 we can observe the performance of each
source alone. One of the first unexpected results is
that the 0-shift source, i.e. the wavelet transformation
of the complete pulse window, is not performing best.
One of the peaks on the other cycles is performing
better. There is an obvious random effect in the
modelling process and so these results are not
necessarily extended to other experiment setups. But
still, this case is most probably not an exception.

Fig. 5: Performances for the integration of three
sources, one of them is 0-shift and the other two vary
from 0 to 47-shift, measured as the mean difference.
Best value is x=5, y=27, with z=2.1867.

In figure 5 an example is shown around the multiple
source integration performance. It calculates the
performance, measured as the mean difference for
three sources, one of them fixed to the 0-shift source,
and the other two varying from 0 to 47-shift. Note that
the function is almost symmetric along the main
diagonal, only small random effects because of the
stochastic machine learning algorithm prevent the
function from being completely symmetric. The best
pulse detection set is {0,5,27}, confirming that first



cycle sources (those having better pulse information
input) are not necessarily the ones having better
performance, neither alone nor together with other
sources.
The sources being best at one experiment will still be
so when integrating more sources, as expected.
On figure 6 the best performance values for each
multiple source is shown. Note that the behaviour of
the function finds a limit after a small number of
sources are added to the integration step. Moreover, in
our experiments multiple source integration with
more than 8 sources did not beat this last value
because of stochastic machine learning behaviour.
There is no doubt that non-linear classifiers will
increase performance in those more complex cases.
For this test setup, and available resources, the best k
values were around 2 ≤ k ≤ 3.
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Fig. 6: Best multiple source linear integration
performance from single source to 8 sources (x-axis),
measured as mean difference (y-axis). The highest
value is 2.2431.

6   Conclusions and Future Work
Radar emitter classification is a subset of the data
clustering problem which tries to discover some
hidden structure in the input data. Most of the
algorithms applied for solving this problem fit into
two main categories: Statistical modeling and Neural
Networks. We have proposed a novel approach where
the neural networks paradigm is improved by the
SVM and in this paper we have shown that additional
uncorrelated information can be found in discrete
wavelet algorithms when processing translated input.
The number of additional sources of information that
are useful in an integration step has a limit. This limit
is related with the number of decimations executed to
obtain the final representation, i.e. with the scale. Our
results show that the use of this approach increases the
system detection capability as much as the difference

between the best and the worst single source wavelet
description.
The next step is to compare this algorithm to a single
source discrete wavelet transform with an increase on
the sampling rate with different approaches. We
expect the results will be fairly similar, using linear
and non-linear classifiers.
Then we will be able to analyse mathematical
similarities between the discrete and dyadic wavelets,
and the way to achieve computational cost-efficient
discrete translation invariant transforms.
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