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Abstract: - This article presents a comparison study on the performance of methods for fault detection in ball 
bearings. Different kinds of actual faults have been acquired in real time from a test platform and a signal of a 
fault in an early stage has been created. The effectiveness of prediction of several methods is tested when faults 
are in different stages of development. Furthermore, the implementation of these techniques for actual systems 
and real-time application is discussed. 
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1   Introduction 
Automatic system diagnosis has always attracted 
considerable interest in control engineering due to its 
applications in machinery condition monitoring and 
maintenance, and its effects increasing safety and 
product quality. The greatest challenge in this field of 
knowledge is to achieve the prognosis of faults, that 
is, not just detect, isolate and assess the severity of a 
fault but also predict when the fault will be 
unbearable for the operation requirements. 
In the case of mechanical transmissions, vibration 
signal analysis has been proven to be the one of the 
most effective techniques for the detection and 
diagnosis [1]. The process followed in these systems 
consists in a digital processing of the vibration 
signals and a posterior analysis to determine which 
element of the specific mechanic component is at 
fault.Particularly, rolling element bearings and gears 
are the most critical components in a mechanic 
transmission and their faults can provoke a great 
damage to the transmission and the whole machine. 
In the area of rolling element bearings, McFadden 
and Smith published several articles for modelling the 
bearing vibrations caused by single and multiple 
defects [2], [3]. Since then, the research about fault 
detection has led to the development and application 
of different signal processing techniques: starting 
from the traditional ones more used in industrial 
applications, [4]; [5]; [6] as FFT, cepstrum, amplitude 
or frequency demodulation, Hilbert transforms [7] to 
more recent methods as cyclostationary analysis [8]; 
[9]; [10], neural networks [11] and wavelet 
transforms [12]; [13]. Signal models have also been 
used: MA (moving average) models, AR 

(autoregressive) models for prediction [14]. The 
development of fault models for simulation and 
diagnostics searches the improvement of the 
diagnosis [15]. In [16] Randall carried out a 
comprehensive review of all these methods. More 
specifically, Baillie discussed the adequacy of 
autoregressive modelling for fault detection in rolling 
element bearings [17].Despite the extensive research 
carried out into different methods for fault detection 
and diagnosis, most of them are based on simulated 
signals or signals from a fault in an advanced stage of 
development. This study pretends to focus on the 
comparison of the suitability of all these techniques 
for the detection of faults in an early stage. In 
general, faults in ball bearings develop gradually, 
therefore their detection at an early stage can enable 
the development of procedures and techniques for 
machine condition prognosis. Currently, prognosis is 
evaluated by processing trends or by fault signal 
models. Hence, after a reviewing current diagnostic 
methods and the processing trends, the final aim of 
this research is the automation of the detection, 
diagnosis and prognosis of ball bearings in real-time. 
The first step in this process has been the creation of 
a DSP based device, which allows the integration of 
monitoring and diagnostic strategies in real-time. 
 
 
2   Signal acquisition 
The system used for obtaining the signals is a test 
bench of a mechanical transmission, which is 
composed of several rotating shafts, an engine, a pair 
of gears, a belt and several ball bearings. Fig. 1 shows 
the test bench.The monitoring and diagnostic 
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platform implementation has been divided into three 
stages. The first stage is corresponding to the signal 
acquisition. The acquisition system performs the 
sampling of the signal coming from a piezoelectric 
accelerometer (4371 Brüel&Kjaer) after being 
filtered and amplified by a signal conditioning system 
(2635 Brüel&Kjaer). The sampling frequency is 
20000 Hz, which will allow the analysis of signal 
frequencies up to 10000 Hz. This value is high 
enough to detect faults in ball bearings since the fault 
frequency and resonance frequencies do not exceed 
3000 Hz for the test conditions. The number of 
samples stored is 4096, corresponding to a spectrum 
resolution of 5 Hz, is enough to detect the fault. 
Finally, the a/d conversion is achieved by means of 
the ADC TLV1570 (Texas Instruments) which 
combines a high acquisition speed of 1.25 Msps with 
a 10-bit resolution. 
The second stage consists in the signal processing. 
The vibration acquired is processed with different 
diagnostic algorithms, which have been implemented 
in the DSP. The processing board used is based on 
the DSP TMS320C6711 of Texas Instruments, which 
operates in floating point at 150 MHz. 
The third and final stage deals with the 
communication with the PC. Once the signal has been 
processed and the diagnostic has been obtained, the 
DSP device transmits that information to the PC. The 
implemented communication is performed through 
the parallel port by means of the DSP kernel tools 
named RTDX (Real Time Data Exchange). 
The experiments carried out for the sensing strategy 
have demonstrated that the best point for the signal 
measurements is given for a radial and horizontal 
location of the sensor on the bearing. 

 
Fig. 1. Data acquisition process for mechanical 
transmission test bench. 
 
3   Fault description 
The most typical faults in ball bearings are produced 
by a localised wear in the inner race, the outer race or 
the balls. Localised defects include cracks, pits and 

spalls on the rolling surface, although the dominant 
mode of fault is the spalling of the races. When the 
ball strikes the defect, a shock is produced, exciting 
high frequency resonances of the structure. The 
presence of such defect causes a significant increase 
in the vibration level. The frequency of the shocks 
can be calculated by the following formulae (1): 
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where BPFO is the ballpass frequency for outer race, 
BPFI is the ballpass frequency for inner race and BFF 
is the ball fault frequency. These fault frequencies are 
dependent on the number of balls (n), shaft speed 

( rf ), contact angle (α) and ball (BD) and pitch (PD) 
diameters.The ball bearing characteristics are shown 
in table I. However, due to small gaps among the 
balls or a bad lubrication, the fault frequency can 
suffer slight variations. 
The analysis of the fault frequencies from the 
acquired signals has traditionally been the way to 
decide whether a fault has produced or not. An 
increase in the amplitude of the vibration at those 
frequencies can be interpreted as the result of the 
periodic shock caused by the fault. 
 

 
Fig. 3. Spectrum for a bearing with an outer race fault 
(shaft speed 25 Hz). 
 
In order to check the ability of different diagnostic 
methods to predict the evolution of damage in ball 
bearings, a model of a fault at an early stage has been 
developed. This signal has been created from a non-
faulty bearing signal to which a train of impulses has 
been added. The frequency of this added signal will 
vary depending on the fault we want to simulate. The 
faulty signal must have similar characteristics as the 
non-faulty one, i. e., the fault must not be evident in 
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the time representation and the resonance frequencies 
must not be very excited in the frequency 
representation. 

Table 1. Bearing characteristics  
 
3   Comparison of diagnostic methods 

 
 

3.1 Traditional methods 
Traditional methods are thoroughly presented in [5]. 
In this study we compare the performance of different 
traditional techniques for the diagnosis of developed 
faults and faults at an early stage. The techniques 
involved in this comparison are: Fast Fourier 
Transform (FFT) analysis, cepstrum, amplitude 
demodulation analysis, and Hilbert transform 
technique for the four types of faults previously 
described: outer race fault, inner race fault, ball fault 
and fault at an early stage. 

 
Fig. 4. Comparison spectra for big and incipient fault 
(shaft speed 19.3 Hz). 
 
3.1.1   Fast Fourier Transform analysis 
One of the most current characteristics among 
vibration signals generated by bearings is that they 
present different types of series of harmonics. These 
series are composed of multiples of the fault 
frequency and lateral bands of the rotation frequency. 

For an outer race fault, for instance,, there will be a 
frequency spacing among peaks at the resonance 
frequencies as it can be seen in fig. 3. 
Nonetheless, for undeveloped faults this method does 
not show peaks of enough magnitude at the resonance 
frequencies in order to achieve a fault assesment (see 
fig. 4). 
 
3.1.2 Cepstrum  
The cepstral analysis calculates the spectrum of the 
logarithm of the energy spectrum. This technique 
discovers periodicities in the frequency spectrum. 
However, inexactitudes in the spacing of frequencies 
(as in fig. 4) decrease the effectiveness of this 
method. Fig. 5 shows that the frequency peak is not 
strong enough to be distinguished, even for a big 
fault. Concequently this is not a proper methos for 
discovering incipient faults in bearings. 
 
3.1.3 Amplitude demodulation 
Amplitude demodulation is an adequate technique for 
bearing fault diagnosis since the fault signal is similar 
to a signal modulated in amplitude. Through a 
demodulation process, the corresponding signal to the 
impulses (the envelope) can be separated from that 
corresponding to the resonances (carrier). In the 
demodulation process it is essential that the filtering 
of the signal is correct. The signal must be filtered by 
a low-pass or band-pass filter in order to eliminate the 
high frequencies (the carrier). The cut-frequency 
must be selected above the bearing fault frequency. 
As a result, the spectrum will show harmonics of the 
fault frequency (see Fig. 6). 

 
Fig. 5. Cepstral analysis for an outer race fault (shaft 
speed 25 Hz). 
 
3.1.4 Hilbert transform 
The Hilbert transform is the relationship between real 
and imaginary parts of the Fourier transform. The 
Hilbert transform is used to demodulate the signal so 
as to obtain the low frequency variations in a high 
frequency signal, as it is needed in diagnosing faulty 
bearings. Fig. 7 shows the Hilbert transform for the 
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vibration signal of a bearing with a developed fault in 
the outer race for a shaft speed of 19.3 Hz. The 
advantage of the Hilbert transform is that this method 
does not need to filter the high frequencies to obtain a 
good result. This method is the most sensitive to fault 
among the classical ones and gives the clearer 
representation. Therefore it is the most indicated to 
analyze incipient faults. 

 
Fig. 6. Amplitude demodulation analysis for an outer 
race fault (shaft speed 25 Hz). 
 
3.2 Advanced methods 
In recent years other approaches to signal processing 
have been used in fault detection and diagnosis. The 
most mentioned and published are wavelet transforms 
and model based diagnosis. 
Wavelet transforms can be regarded as a natural 
evolution of Fourier transforms. Whereas the latter 
provides a frequential representation of a time series, 
the former frames that frequential information in time 
scales. This approach has a great advantage in that it 
achieves fine time resolution at high frequencies and 
fine frequency resolution at low frequencies. This 
characteristic is really helpful when trying to make 
out faults at an early stage since, as faults in a 
developed stage, they have to be located both in time 
and frequency. Separately, the time series and the 
frequency representation do not make obvious the 
presence of a fault but their combination may help. 
Besides, the wavelet transform is a powerful tool to 
disclose transient information in signals.As a 
disadvantage for wavelets to be used in real-time 
processing, we could appoint the fact that they 
become computationally slow. Analogously with the 
Fourier domain, where convolutions become 
computationally fast, we can find a large number of 
computations that can become computationally 
efficient thanks to the sparsity of operators when 
transformed into the wavelet domain [19]. This 
characteristic makes possible its implementation for 
real-time processing, as presented in [20] with the 
continuous wavelet transform. However this 

implementation is beyond the aim of this document. 
Therefore, we will only discuss the possibilities of the 
technique to detect early faults.In the literature there 
is a vast research about different wavelet transforms 
and their applications in fault detection either for 
gears or rolling element bearings. May [21]; [22] and 
[23] serve as some recent examples of the interest 
that this matter raises. 

 
Fig. 7.  Hilbert transform for outer race fault (shaft 
speed 19.3 Hz). 
 
For vibration analysis, several wavelet wavelet 
techniques (DWT, wavelet packets, matching pursuit, 
CWT, etc.) are capable of enhancing the non-
stationary features such as spikes and transients of 
vibration signals generated in rolling element 
bearings and gears. In many cases wavelet analysis is 
more effective than traditional techniques in the fault 
detection of these mechanical systems. In this case a 
continuous wavelet transform (CWT) has been used 
to perform the analysis: 

∫ τψ=τγ dt)t()t(f),s( *
,s   (2) 

where * denotes complex conjugation. 
The wavelet transform needs the choice of a mother 
wavelet, i. e., the basic function from which wavelets 
will be generated: 







 −

=
s

t
s

ts
τψψ τ

1)(,

     (3) 
where s is the scale factor and τ is the translation 
factor [24]. 
We have chosen the Morlet function due to its simple 
analytic form and because, being a cosine function 
with exponential decay on both sides, it resembles an 
impulse (like fault vibrations do) and therefore it is 
effective for detecting periodic impulse signals: 

)5cos()( 2/2

xCex x−=ψ    (4) 
where the constant C is used for normalization. 
The wavelet transform used represented the fault but 
it does not give a clear diagnostic. The difficulty to 
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face when working with wavelets is to choose the 
most appropriate for the specific analysis, what is not 
always obvious. 

 
Model Model order 

Inner race fault 45 
Outer race fault 20 
Rolling element fault 20 
No fault 10 

Table 2. Table borrowed from the paper of [17]. 

 
Fig. 8. Wavelet analysis for an inner race fault (shaft 
speed 19.3 Hz). 
The second approach to be considered is model-based 
diagnosis. In particular, autoregressive (AR) 
modelling has been proved as an adequate technique 
for obtaining a prediction in rolling element bearings 
vibration signals [25]. Additionally, linear regression 
models allow fast calculation, which is convenient for 
real-time applications. Thus, a linear autoregressive 
process has been selected to build the model: 

)()()1()( 1 tvntyatyaty n =−++−+ "     (5) 
)( 1 n

T aa …=θ  
where n is the model order, i. e., the number of past 
inputs required, and v(t) is considered to be white 
noise. The model order can easily be determined 
experimentally. An important feature of this type of 
model is that the prediction is linear in the parameter 
vector θ, which makes its estimation simple [26].  
We can express the linear regression model as a 

forward linear predictor, where ŷ denotes the 
estimated value for y: 

)()()1()(ˆ 1 tvntyatyaty n +−−−−−= "   (6) 
such that the sum of the squares of the errors is 
minimized: 

)t(y)t(ŷ)n(e −=    (7) 
If the estimation of the signal for the next step is 
correct, the prediction error will correspond to the 
value of the white noise. The calculation of the 
estimates of the model parameters is commonly made 
through the Yule–Walker equations, which can be 
solved by the Levinson-Durvin recursion algorithm. 

The computation of the parameter estimated requires 
proportional to 2n2 operations [27]. As for the model 
order, the author in [17] defined the optimal linear 
autoregressive model orders as shown in Table II. 
The process of diagnosing a fault consists in 
estimating the future state of the signal and 
comparing it to the original one. When a fault occurs 
the value will not be well predicted and the 
autocorrelation sequence of the prediction error will 
show a deviation. 
 
 
4   Future work 
There are several points to consider in a further 
research: to develop an actual fault at an early stage 
to compare the methods and check their performance 
in R-T and to extend the comparison to other 
methods. Finally, the implementation of these 
methods in a real system (such as a mechanical 
transmission in a machine) instead of a test bench 
will be the next stage in our research. Real systems’ 
diagnosis and prognosis must be made in operation, 
which implies several R-T requirements, sensor 
limitations and noise dealing as the one caused by 
gears and other mechanical components on the 
signals measured for a determined component. 
 
 
5   Conclusion 
In this paper we have presented a comparison among 
different diagnostic methods from the point of view 
of detecting faults at an early stage and their 
implementation in real-time. According to the results 
presented, the Hilbert transform appears to be a 
technique with possibilities to be successfully 
implemented to detect early faults with an acceptable 
computation cost. 
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