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Abstract: - Two main difficulties in process monitoring are lack of reliable measurements of key 
process variables and difficulty in defining quantitative relationships between state variables. In this 
study sensor networks are used to demonstrate an approach based on Kalman filtering to model the 
specific monitoring systems. Kalman filtering at both local nodes and fusion center are the covariance 
matrices of tracking errors.  Performance analysis is dedicated to the distributed Kalman filtering 
fusion for distributed recursive state estimators of dynamic systems under consideration.  
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1   Introduction 
Many current control systems make use of a large 
number of various sensors in practical applications 
ranging from robotics and automation systems and 
defence, to the monitoring and control of plant 
processes. An important practical problem in such 
systems is to find an optimal state estimator.  
Kalman filtering is the best-known recursive 
algorithm to optimally estimate the unknown state 
of a dynamic system. When the processing center 
can receive all measurements from the local sensors 
in time, the centralized Kalman filtering can be 
carried out, and the resulting state estimates are 
optimal. Unfortunately, due to limited 
communication bandwidth, or to increase 
survivability of the system in a poor environment, 
every local sensor has to carry out Kalman filtering 
upon its own observations first for local 
requirement, and then transmit the processed data–
local state estimate to a fusion center. Therefore, the 
fusion center needs to fuse all received local 
estimates to yield a globally optimal state estimate 
(see [7, 21 ]). Grime, Durrant-Whyte, and Ho [5]) 
considered sensor networks in which there is no 
central fusion center and each sensor communicates 
to its nearest neighbors. A more general 
decentralized Kalman filter was considered in [6], it 
requires no fusion center and no explicit knowledge  
of the transformations between the estimators, and 
minimizes communication with respect to message  

 
 
size and topology.  
 
2   Monitoring with Sensor networks 
Natural environments are typically  extremely 
dynamic and therefore sensors will need to 
continuously adjust to dynamic systems. The 
challenge is to represent an accurate picture of the 
changes in the environmental variables. This can 
only be achieved if the physical phenomenon is 
sensed or sampled from the environment at an 
accurate rate. The physical phenomena measured 
ultimately dictates spatial and temporal sampling 
scale. A very well-known scenario for sensor 
network applications is habitat monitoring, and a 
first concrete experiment in this field was carried 
out on the Great Duck Island. Sensors were 
deployed in burrows of seabirds for monitoring 
purposes. During the day time, the burrows were 
expected to be empty, as thus a low sampling rate 
should be suffcient to avoid idle listening. However, 
if some unusual measurements are recorded at some 
burrows, it would be desirable to collect samples 
from them more frequently than from other burrows.  

Generally, we assume that each node in a wireless 
sensor network has certain constraints with respect 
to its energy source, power, memory, storage, and 
computational capabilities. Not only the resources of 
the single sensor nodes are limited, but also those of 
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the network as a whole. Especially in wireless 
sensor networks, which have one shared medium 
and therefore have to deal with packet collisions, the 
network capacity is strongly limited. Multisensor 
data fusion has found widespread application in 
diverse areas ranging from local robot guidance to 
military etc. (see [17]). The use of sensory data from 
a range of disparate, multiple sensors are to 
automatically extract the maximum amount of 
information possible about the sensed environment 
under all operating conditions. Increased 
performance, reliability, data rates, and autonomy, 
coupled with increased complexity, diverse 
uncertain operating environments, requires the 
automated intelligent combination of data from 
multiple sensors to derive less ambiguous/uncertain 
information about the desired state. In recent years 
there has been increasing awareness that a variety of 
sensors/platforms owned and operated by different 
agencies can be fruitfully integrated for better 
intelligence gathering, situation awareness, tactical 
missile defence, etc. For this purpose, efficient 
algorithms for data fusion and track-to-track 
association must be derived so that existing systems 
can be easily upgraded without imposing undue 
burdens on system operators, using existing 
hardware and software. While the concept of data 
fusion is not new, the emergence of new sensors, 
advanced processing techniques, and improved 
processing hardware make real-time fusion of data 
increasingly possible. Despite advances in electronic 
components, however, developing data processing 
applications such as automatic guidance systems has 
proved difficult. Systems that are in direct contact 
and interact with the real world require reliable and 
accurate information about their environment. This 
information is acquired using sensors that are 
devices that collect data about the world around 
them. The ability of one isolated device to provide 
accurate reliable data of its environment is 
extremely limited as the environment is usually not 
very well defined in addition to sensors generally 
not being a very reliable interface. Sensor fusion 
seeks to overcome the drawbacks of current sensor 
technology by combining information from many 
independent sources of limited accuracy and 
reliability to give information of better accuracy and 
reliability. This makes the system less vulnerable to 
failures of a single component and generally provide 
more accurate information. In addition several 
readings from the same sensor are combined, 
making the system less sensitive to noise and 
anomalous observations. The objective of this paper 
is to derive new Kalman based fusion model to give 
a better, state estimate at each step. 

Resources in sensor networks are strongly limited 
and thus resource consumption (energy, network 
bandwidth) must be minimized. Adaptive sampling 
handles this issue by making the rate of sensing 
dynamic and adaptable to the signal complexity of 
the environment. Since sensor networks differ from 
traditional distributed systems, hardware (sensor 
nodes) and software (algorithms) must be adapted 
and take some special properties of sensor networks 
into account. In future applications sensor networks 
are envisioned to consist of hundreds or even 
thousands of single nodes, which all communicate 
with each other through an ad-hoc wireless network.  
 
3   Monitoring with Kalman filters 
The Kalman Filter is a mechanism for predicting the 
multi-dimensional state of a system from a multi-
dimensional observable (see [7, 21]). The system is 
assumed to evolve linearly and the observable is 
assumed to be linearly related to the state. Denoting 
for discrete time series the system state x  we have:  

 
[ ] [ 1] [ 1]k k k= ⋅ − + −x A x w  

  

We assume that the system is influenced by process 
noise denoted  w. The state dynamics determine the 
linear operator  A. The state contributes to the 
observation y, which also includes a stochastic, 
additive measurement noise  v:  

[ ] [ ] [ ]k k k= ⋅ +y C x v  
  

The process and measurement noises are assumed to 
be Normal processes with known covariances  W 
and V. Now let us assume that we have an estimate 

[ 1]k −x  of the state, and also an estimate of the 
error co-variance [ 1]k −P  in the estimate, at step  
k-1. The Kalman filter uses these estimates, the 
observation [ ]ky  at sample k , and A , C , W  and 
V  to form an estimate of the state and its error co-
variance at step k:  

 

( )[ ] [ ] [ ] [ ]k k k k= ⋅ −x K y y   

( ) ( )[ ] [ ] [ ] [ ] Tk k k k= − ⋅ ⋅ ⋅ − ⋅P I K C P I K C   
 

where  
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[ ] [ 1]k k= ⋅ ⋅ −y C A x   

[ ] [ ] [ ]T Tk k k 
 
 

= ⋅ / + ⋅K P C V C P C   

[ ] [ 1] Tk k= ⋅ − ⋅ +P A P A W   
 

The estimated system state x[k] is thus completely 
determined by the observation [ ]ky , the estimated 
state at step k-1, the system dynamics, and the 
statistical properties of the process and measurement 
noise. The error in the estimate [ ]kx  falls with k , 
converging upon a limiting error covariance that is 
fully determined by {A, C, W,  V}. 
Correspondingly, we can choose any initial estimate 
of x  and P  and the filter will, after several 
iterations, adjust the state estimate and error 
accordingly.  

A Kalman filter uses the known dynamics of the 
modes to distinguish between the mode “signal” and 
other contributions to the measured detector output: 
i.e., it detects  modes. This distinguishes it from 
other methods such as linear notch filters [8] which 
purport to characterize or remove artifacts, but 
which in fact simply suppress all contributions to 
the noise. 

From the state estimate at each step we can, through 
the measurement equation, estimate the contribution 
of the system to the actual observation. This 
estimated contribution can be subtractive removed 
from the actual observation, leaving a residual that 
is as free from the contaminating influence of the 
process as we can make it.  

 
4   Simulation Experiment 
To explore the effectiveness of the Kalman filter in 
monitoring with sensor networks we have collected 
data from multiple sensors: temperature (deg C), 
light (lumens) humidity (percent), and the voltage 
level (V) of the batteries at each node. The data was 
collected in the following format: 
 
 
 

Time NodeID Temp Light Hum Vol 

 

This is a "real" dataset, with lots of missing data, 
noise, and failed sensors giving outlier values, 

especially when battery levels are low. The typical 
graph of data is shown on Fig. 1. Figures 1 and 2 
show the result of a Kalman filter implementation. 
Fig 1 shows temperature data without Kalman 
filtering, anf Fig. 2 shows estimation with Kalman 
filtering. 

 

Temperature data

15

20

0 50 100 150 200 250 300

Time (30sec steps)

Te
m

p 
(d

eg
 C

)

 

 

Fig 1. Estimation with moving average (dots 
represent measurement and solid line moving 
average)  
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Fig 1. Estimation with Kalman filter (dots 
represent measurement and solid line estimation 
with Kalman filtering)  

 
 
5   Results and Discussion 

Given a set of network and environment 
characteristics and definitions, resource 
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consumption (energy and network bandwidth) 
should be minimized while maximizing the 
measurement accuracy. The aim is to produce an 
accurate spatial picture of a certain physical process, 
while making an efficient use of resources  As 
events are not uniformly distributed in the 
environment, not all sensor nodes should collect 
data samples at a common, fixed rate.  
 
In this paper a preliminary analysis has been 
presented for the application of Kalman filtering to 
sensor data fusion. Simulation was used for testing. 
First, the data collection experiment was set up. 
Individual sensors were placed in an environment 
(lab) where the temperature varies. Second, software 
[20] has been adopted to run simulations. In our 
experiment we have shown that the data fusion with 
feedback improves quality of monitoring in sensor 
based networks.  
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