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Abstract: Usually numerical modelling and simulation of multicomponent piezoelectric actuators lead to the 
large number of recurred calculations with different geometrical parameters of the actuator and to the problems 
concerning the changes of modal shape sequences during recurred calculations. The exchanges in the modal 
shape sequence prevents automation of solving different problems. For this reason an improved algorithm for 
solving the problems related to the changes in the modal shape sequences has been proposed in the paper, also, 
the dependence of eigenfrequencies on various parameters of multicomponent piezoelectric actuators and 
problems related with the exchanges in the modal shapes sequence has been analyzed. 

 
Key-Words: piezoelectric actuator, modal shape, multicomponent oscillations 
 

 
1 Introduction 
Whole modern technical areas (radiotechnology, 
acoustic, vibrotechnology, wave-technologies) are 
based on the application of different vibration 
processes. The development of new device groups 
that use piezoactive materials for high frequency 
oscillation transformation into a continuos 
multidirectional motion provides an opportunity to 
extend the field of creating time constant 
positioning drivers, micromanipulators, micropumps 
and other drives [7]. The performance of these 
devices strongly depends on the features of the 
actuator, which is the main part of the 
piezomechanical system. The synthesis of needful 
oscillation fields of the actuator can be obtained 
optimizing the geometrical parameters, the vector of 
poliarization and the topology of excitation zones of 
the actuator. The piezoelectric effect and the 
hysteresis effect play an important role in the 
dynamical behavior of these actuators [6]. So it is 
very important to know what modal shape will be 
excited when modelling piezoelectric actuators. 

The functioning principle of most piezoelectric 
actuators is based on the excitation of higher 
resonance frequencies. The numerical analysis of 
such piezoelectric actuator is usually tied to a 
particular modal shape. While performing 
numerical analysis, when only the geometrical 
parameters of a piezoelectric actuator change, a 
problem arises that is related to the change in the 
modal shape sequence. Since vibration devices 
usually function at one of their modal frequencies, 
as the modal shape sequence changes, the problem 
solution usually does not converge, and the 
numerical analysis becomes meaningless. 

 
 
2 Construction of Piezo Actuators  
The performance of ultrasonic motors strongly 
depends on the features of the actuator, the main 
part of any piezomechanical system. There are some 
basic shapes of piezo actuators such as beam, plate, 
cylinder, disc, ring and etc. Various constructions of 
actuators are used in order to achieve a particular 
law of movement of the actuator and the final link 
of the kinematics pair Fig.1 [7]. The actuators 
shaped like beams and plates are mostly used in 
ultrasonic motors.  

The characteristics and types of the excited 
multicomponent oscillations of the piezoelectric 
actuator depend on its geometrical parameters, 
boundary conditions and direction of the 
polarization vector. The topology of electrodes and 
geometrical parameters of the actuator define the 
direction of the excited oscillations. In order to 
achieve suitable characteristics of the oscillations, 
particular geometrical parameters of the actuator 
must be calculated.  

 
Fig 1. Constructions of the piezo actuators. a) k=l, 
n=l; b) k=l, n=2 [9, 10]. 

Many different types of multicomponent 
oscillations can be excited using these actuators: 
longitudinal-flexural, longitudinal - torsional and 
etc. Using the variable vector of polarization, three 
and four component oscillations of the beam shaped 
actuator can be achieved [1].  

2005 WSEAS Int. Conf. on DYNAMICAL SYSTEMS and CONTROL, Venice, Italy, November 2-4, 2005 (pp609-613)



3 Problem Definition 
Since the analysis of multidimensional piezoelectric 
actuator cannot be performed without considering 
the vibration device, most often the problems of 
piezoelectric actuator research are solved in an 
integral fashion taking into account the whole 
device. 

The formal algorithm for solving the problem 
looks as follows: 

 
Fig. 2 The structure of the general calculation 

algorithm. 

In the case under consideration, at the first stage 
(changing parameters) the geometrical parameters 
of a piezoelectric actuator are changed. At the 
second stage (eigenvalues) a matrix of eigenvalues 
is formed, whose every column describes a 
corresponding modal shape; the first column 
describes the first modal shape, the second column 
– the second shape and so on. While changing the 
geometrical parameters of a piezoelectric actuator 

the change in the modal shape sequence has been 
observed.  

Exchanges in the modal shape sequence could 
be determined analyzing various constructions of 
piezoelectric actuators. For example, let’s consider 
longitudinal – flexural oscillations of the beam 
actuator. Using this type of  actuator, changes of the 
modal shape sequence could be found analytically 
[8]. 

Using the technical oscillation theory of the 
beam the longitudinal oscillations are found by 
solving the second order differential equation [2, 4]: 
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Longitudinal oscillations of the beam can be 
expressed as follows [2, 4]: 
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E - the Jung modulus; k - the mode number of the 
longitudinal oscillations; l - the length of the beam; 
ρ mass density. 

Flexural oscillations of the beam are found by 
solving the second order differential equation [2, 4]: 
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Flexural oscillations of the beam are described 
by the expression [2, 4]: 
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h - the height of the beam; n – the mode number of 
the flexural oscillations; 

If certain values of k and n are defined, then h/l 
ratio of the beam could be calculated. From the 
equations (2) and (4) following equation could be 
obtained: 
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As an example: 

1765.02;1 =⇒==
l
hnk  (6) 

But h/l ratio could be changed, for example, 
increasing or reducing the height of the beam. In 
this case k value remains the same, but n value 
changes. This means that the sequence of modal 
shapes changes when the geometrical parameters of 
the beam vary. For example, when the length and 
height ratio is 0.5<l/h<3 we have an ordinary modal 
shape sequence and in other case second and third 
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modal shape of two dimensional actuator changes. 
Calculations of multidimensional piezoelectric 
actuators, of course, have the same problem, but to 
solve it analytically is very difficult or even 
impossible [8]. Modal shape sequence exchanges 
often causes fatal errors in the calculation process 
well as unexpected errors in results [5]. And it 
means that at Eigenvalues stage of solving the 
problem an incorrect value of wk (natural 
frequency) can be chosen. Then other stages of 
solving the problem become meaningless because 
the actuator made to the parameters obtained is 
defective. Hence the main problem is to choose a 
suitable value of wk. 

In most cases piezoelectric actuators are 
resonance systems that operate in the first or higher 
resonance frequency. The synthesis of the needful 
field of oscillations must be obtained by using a 
particular shape and dimensions of actuator and also 
certain geometry of the locations of excitation 
zones. Equations (7) fully define the piezoeffect [4]: 

 
(7) 

 

where [cE], [e], [∋s]  –  the matrix of stiffness for a 
constant electric field; the matrix of the 
piezoelectric constant; the matrix of dielectric 
constant evaluated at the constant strain, 
respectively; {σ},{ε},{D}, {E} – the vectors of 
stress, strain, electric induction and electric field, 
respectively. 

Various kinds of resonance oscillations of 
actuators - longitudinal, flexural, rotational, shear 
and so on - could be obtained using a different 
geometry of electrodes [1]. In order to achieve 
required resonance oscillations of the actuator, 
particular electrodes must be excited.  

Analysis of the piezoelectric actuator must be 
carried out appreciating the electric occurrence in 
the system. Based on FEM, every node of the 
element has one additional DOF used for electric 
potentials in FEM modeling. The solution applied 
for the equations of motion, suitable for the actuator, 
can be derived from the principle of minimum 
potential energy by means of variation functional 
[4]. The basic dynamic FEM equation of motion for 
piezoelectric transducers that are fully covered with 
electrodes can be expressed as[11]: 
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where [M], [K], [T], [S], [C] - the matrices of mass, 
stiffness, electro elasticity, capacity and damping, 

respectively; { } { } { }R,, ϕδ  - the  vectors of nodes 
displacements, potentials and external mechanical 
forces, respectively. 
Here: 
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where [B], [BE]  – the matrices of geometry 
used for evaluation of displacements and potential, 
respectively; [N]  – the function of the shape used 
for evaluation of the mass matrix. The damping 
matrix [C] is derived using mass and stiffness 
matrices by assigning constants α and β. 
 Usually only the first equation from system (8) is 
used in the modeling process, because it is 
considering that the current source is powerful 
enough and ensures defined values of the electric 
potentials.  
 Solving dynamic equations using normalized co-
ordinates, the vector of nodes displacements {u} is 
expressed as a superposition of modal shapes with 
weight coefficients [3]:  
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Based on the equation (14) the following 
expression of dynamic equation of the actuator 
could be obtained [3]: 
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 Usually piezoelectric actuators operate a in 
certain resonance mode and the system of the 
equations (15) could be solved using the dynamical 
reduction method. This means that only one 
equation, which corresponds to a certain modal 
shape, could be solved. But in this case the 
calculation algorithm couldn’t be statically tied with 
the definite equation number k, because its value 
becomes indefinite when geometrical parameters or 
boundary conditions change. This is the main reason 
why errors appear hindering automation of the 
numerical experiments. So it’s necessary to identify 
the modal shape and find the corresponding number 
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of the column in matrix [Y] during recurred 
calculations [8]. 
 
 
4 An Algorithm of Modal Shape 
Identification 
Dominating coefficients is the way to define the 
type of oscillations of the actuator and to sort modal 
shapes by the dominating type of the oscillations for 
example longitudinal, flexural or torsion.  
 When the modal frequencies analysis of 
multicomponent actuators is done using FEM, 
dominating components of the oscillations can be 
found referring to the energetic method of the 
oscillation analysis, because amplitudes raised to the 
second power are proportional to the energy of the 
oscillations [8]. In that way the ratios (dominating 
coefficients) of the components of amplitudes in all 
directions can be found, and the direction with the 
maximum of amplitudes can be defined. 
 Let’s calculate the following sum [7]: 
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The dominating coefficients of the model can 
be expressed as follows [7]: 
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The physical meaning of dominating 
coefficients is the ratios between different 
oscillation energy components in the directions of 
coordinate axes. The sum b

kS  defines the energy of 
the oscillation of the b natural frequency in k 
direction and the dominating coefficient b

kjm  defines 
the relation of the oscillation energies in i and j 
directions of b natural frequency. Dominating 
coefficients have the following characteristic [7]: 
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Based on dominating coefficients we could 
determinate the type of dominating oscillations and 
also define the level of correlation of 
multicomponent oscillations as follows: 

⇒=τb
kjm   ...3,2,1lg =τ  (19) 

 Dominating coefficients is the method to define 
the type of oscillations of the actuator and to sort 
modal shapes by dominating type of the oscillations 
for example longitudinal, flexural or torsional. In 
order to finally identify the modal shape additional 

characteristic criteria must be applied, because the 
values of dominating coefficients vary when the 
geometrical parameters change. These criteria are 
the nodes points or lines number of the modal shape. 
During calculations the number of node points or 
lines could be found referring to the sign of the 
oscillations amplitude alternating around the 
equilibrium attitude (Fig. 3). 

 

 

 

 

 
 
Fig. 3 Modal shape identification of piezo actuators: 
a) beam, b) plate. 

The exchanges in the modal shape sequence are 
a general case problem concerning not only 
piezoelectric actuators, but also with all mechanical 
structures [8].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4 The improved structure of the general 
calculation algorithm. 
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So, when solution of the mechanical problem 
includes dynamic equations solving during recurred 
calculation, it is proposed to make calculations 
using the improved structure of the general 
calculation algorithm and to add the stage of modal 
shape sequence identification as is shown in Fig. 4. 
 
 
5 Conclusions 
While changing the geometrical parameters of 
piezoelectric actuators the change in the modal 
shape sequence has been observed.  

Identification of modal shapes sequence is 
necessary step in order to automate numerical 
experiments of multicomponent piezoelectric 
actuators. An algorithm of modal shape 
identification has been proposed that could be 
applied to all mechanical structures. This algorithm 
must be used as an additional stage in FEM 
software.  
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