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Abstract: - This paper presents a robust strategy to increase the reliability of Permanent Magnet Synchronous 
Motor drives against encoder or resolver failures. If the position sensor fails, the “failure and recovery 
manager” switches the drive in sensorless mode, i.e., the control system uses the speed and position feedback 
given by a Sliding-Mode observer in place of the sensor. As the accuracy of the sensorless control depends on 
the tuning of the observer parameters according to the motor conditions, the Sliding-Mode observer is 
periodically tuned during the sensor-based control of the drive. A fast and robust tuning of the observer can be 
obtained by Hybrid Evolutionary Algorithms. This prevents untimely sensored-to-sensorless switching due to 
speed transients and allows better performances of the sensorless control when the position sensor fails 
actually. The results carried out prove that the position sensor failures do not affect the drive operation, and 
proposed HEA outperforms the standard search algorithms. 
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1   Introduction 
The field-oriented control of Permanent Magnet 
Synchronous Motor (PMSM) drives needs accurate 
rotor speed/position information [1]. The speed and 
position can be measured by sensors, or estimated 
by observers. Sensorless solutions are very attractive 
because make cheaper the drive, but due to their 
lower accuracy, a number of applications still needs 
sensor-based scheme. However, even if the 
sensorless algorithm cannot completely replace the 
sensors, it can works as a backup for sensor failures. 
The supervisor, “failure and recovery manager”, 
detects position sensor failures and switches from 
sensor-based to sensorless control the drive. In this 
way, the drive can properly operate the motor in 
sensorless mode, and can alerts the user. 
Over the last years, Sliding-Mode (SM) controllers 
and observers have been largely employed in a.c. 
drives [2-9] due to their robustness, but their tuning 
still remains a crucial point to reach optimal 
performances.  In [9], the parameters of an adaptive 
SM observer were optimized during the sensor-
based operation of the drive. Three optimization 
algorithms, included in the Optimization Toolbox of 
MATLAB [10], were compared, and the fminsearch 
function which implements the simplex method 
gave the better performances. 
This paper proposes a new Hybrid Evolutionary 
Algorithm (HEA) as optimization technique. A 
hybrid method consists of a cooperation of different 
search methods that inherited the exploitation ability 
of the local search methods and the explorative 

ability of the stochastic-guided methods [11]. The 
results carried out prove that the proposed solution 
makes shorter and more robust the optimization 
process.  
 
 
2 Backup Sensorless Control of 
SPMSM Drive 
The block diagram of the backup sensorless control 
of a PMSM drive is shown in fig. 1. The SM 
observer [9] works in parallel with the encoder. The 
estimates of the observer and the sensor 
measurement are handled by the “failure and 
recovery manager” that is in charge of two main 
tasks. The former is the observer tuning, whilst the 
latter consists of switching to sensorless control 
when the sensor fails. 
Initially, assuming that the sensor works properly, 
the observer needs to be tuned because the accuracy 
of the speed and position estimates of the SM 
observer [9], ˆrω  and r̂θ  respectively, depends on 
the knowledge of the parameters R, L, and Ψ which 
are the stator resistance, stator inductance and PM 
flux linkage. Usually, the values of these parameters 
are approximate and change during the drive 
operations. In order to keep the estimates as accurate 
as possible, the observer is periodically tuned. As 
shown in fig. 2, the integral of ˆr reω ω ω= −  over 
small periods is used as fitness for the optimization 
process. There is evidence that the faster the 
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optimization is, the sooner the sensor failures can be 
properly detected. 
After the tuning, the estimation error is less than 1% 
in steady-state. In this way the “failure and recovery 
manager” can switches to the sensorless control 
when eω  exceeds a given threshold. Obviously, this 
threshold has to be set according to the observer 
performances over a large range of working 
condition.  
 
 

4 New Hybrid Evolutionary Algorithm 
EAs are guided stochastic search methods that suffer 
from slow convergence rate. A careful configuration 
only partly solves such a problem that lies in the 
non-deterministic nature of evolutionary operators 
which locate the optimal “hill”, i.e., the zone where 
the optimal solution is, but are not able to quickly 
refine it. On the contrary, classical methods, often 
classified as hill-climbing, can efficiently exploit 
local information to speed up the optimization and 
properly work when the function to be optimized is 
smoothed and unimodal; but they often fail in real-
world problems that usually are ill-behaved. In order 
to get the benefits of both the techniques, many 
hybrid methods were proposed. A hybrid method 
consists of a combination between different search 
methods. Although this is a very general definition, 
it is the only one that can include the huge number 
of possibilities. These are given not only by the 
number of search methods, but also by the hybrid 
architecture, i.e., the way in which the different 
methods are integrated in a framework to cooperate. 
As shown in fig. 3, an initial sub-evolution 
transforms the initial population, popin into the 
intermediate population popint. This stage consists of 
running the EA. Consequently, the top-ranking 
individuals are extracted from popint creating 
poptop,in. Analogously, the medium-ranking 
individuals form popmed,in. The size of poptop,in top-
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Fig. 1 - Block diagram of the back-up sensorless control of SPMSM drive. 
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Fig. 2 - Failure and recovery manager. 
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ranking is chosen between the 10% and 15% of 
popint, whilst that of popmed,in is between the 95% and 
85%. It has to be noted that poptop,in and popmed,in can 
be overlapped, that is, can have some individuals in 
common. 
The probabilistic multi-directional simplex method, 
is the local search method that operates on poptop,in 
to produce poptop,out. Again, the popmed,out is obtained 
by the aforementioned EA with popmed,in as initial 
population. Finally, the popout is obtained by a 
fitness-based merging of poptop,out and popmed,out. The 
iteration reported in fig. 3 can be repeated until a 
termination criterion, such as a prefixed number of 
iterations, is satisfied. The new hybrid architecture 
better coordinates the global and local search 
methods in order to save fitness evaluations. The 
proposed solution rations the use of the local search, 
and for the same reason, the simplex method has 
been adopted as local search method. 
The simplex method, popularized by Nelder and 
Mead [12] with their effective version, belongs to 
the class of the direct search methods whose two 
main properties are: 
• no gradient, or any gradient approximation, can 

be used, 
• only the values of the fitness function can be 

used. 
These properties make the direct search methods an 
efficient alternative to Newton’s, and quasi-Newton 
methods that are impracticable: 
• if the fitness evaluation is very time-consuming 

and noisy such as when calculated through 
experimental tests, 

• if gradient, Hessian, and first partial derivatives 
of the fitness function cannot be exactly 
calculated, and their numerical approximations 
are too expensive. 

 
 
5   Simulation Results 
This section shows the results regarding the tuning 
performances given by the proposed HEA and the 
effectiveness of the back-up sensorless control 
scheme. 
In order to test the performances of the optimization 
algorithms, we defined two different search spaces. 
The first, H1, is a parallelepiped low- and up-
bounded between ±30% of the initial guess [R0, L0, 
Ψ0], where the index 0 indicates the nameplate 
values. The second, H2, is a larger parallelepiped 
because low- and up-bounded between ±70% of the 
initial guest. The bounds of the search space H1 has 
been set supposing reduced parameter variations in 
normal conditions of work. Vice versa, the search 

space H2 considers larger ranges for the parameter 
variations. This leads to a more robust system that 
needs more time to be tuned. 
In fig. 4, the first comparison between the proposed 
HEA and the fminsearch is illustrated. It refers to 
the search space H1, and both the algorithms use a 
evaluation time window of 0.02 s in which the 
motor has been operated at the rated speed. The 
simplex method implemented in fminsearch 
produces a fitness value equal to 3.31 after 837 
evaluations. This result is outperformed by the 
proposed HEA that not only reaches the same fitness 
value after 642 evaluations, but further optimizes the 
observer reaching a fitness value equal to 3.01 after 
843 evaluation. 
The same experiment has been repeated considering 
the search space H2 and the results are shown in fig. 
5. There is evidence that the larger search space 
leads to poor performances of fminsearch. It scores a 
fitness value equal to 3.91 after 1078 evaluations.  It 
means that the algorithm has not been able to find 
the same solution as in the previous test, 
jeopardizing the performances of the whole system.  
As regards the proposed HEA, it is able to locate the 
same optimal solution after 1286 evaluations. 
Moreover it has to be noted that the solutions 

Fig. 3 - Iteration of the proposed Hybrid EA. 
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provided after 800 evaluations are good enough to 
ensure an acceptable behaviour of the drive. 
After optimization, the PMSM has been loaded and 
started to verify the “failure and recovery manager” 
performance. The motor has been operated at the 
rated speed (ωn = 1675 rad/s). The load torque has 
been removed at time 0.08 s and the position sensor 
has failed at 0.13 s, then a speed reversal has been 
operated. The speed response is shown in fig. 6. The 
starting transient has an overshoot equal to 1.6%. 
When the load torque is removed, the speed 
overshoot reaches 2.2%, but the “failure and 
recovery manager” does not switches. The sensor 
failure causes a drastic reduction of measured speed. 
Consequently, the control action tends to accelerate 
the motor until the failure is detected. This new 
transient causes a speed overshoot equal to 2.0%. It 
has to be noted that the detection and recovery 
transient is very short. In fig. 7 the difference 
between feedback and estimated speed is shown. 
When this difference exceeds the alarm threshold 
there is the commutation from sensor-based to 
sensorless operation mode, and the feedback speed 
equals the estimated one. The response of d- and q-
axis current components is shown in fig. 8. There is 
evidence the d-axis current component remains 
close to zero assuring the field orientation and, in 
this case, maximum torque/ampere ratio.  

From a glance to figures from 4 to 6, one can see 
that the continuous working is achieved in spite of 
the sensor fault. 
 
 
6   Conclusions 
In this paper a back-up sensorless control strategy 
for PMSM drives has been proposed and tested.  
The success of the strategy is due to the fast and 
robust HEA tuning of the adaptive sliding-mode 
observer.  
This solution increases the reliability of the PMSM 
drive that can overcome sensor failures switching 
from sensored to sensorless mode. Moreover, the 
“failure and recovery manager” and the SM observer 
can be easily embedded in a standard drive because 
they consist of a light software and do not need any 
additional hardware. 
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Fig. 7 –Difference between measured and estimated 

speed. 
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Fig. 7 – d- and q-axis current components. 
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Fig. 6 – Speed response. 
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