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Abstract: - With the increase of data streams generation by sensor networks systems it is desirable to 
develop and improve methods that can automatically classify streams. This paper discusses  some 
clustering mechanisms, and pilot experiments on the data collected from sensor networks. Using self 
organizing methods and other techniques we obtain maps that establish a new relationship in acquired 
data structure. Analysis of the obtained clusters are made by Group Method of Data Handling  .  The 
results of the preliminary experiments validate the feasibility of this approach, and at the same time, 
indicate directions of further work.  In order to reveal new structures in data streams we apply Self-
Organizing Maps and Group Method of Data Handling  algorithms.  
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1 Introduction 

Monitoring streams of data generated by sensor 
nets is currently perceived as one of the 
important challenges for the data analysis and 
data processing. Complex systems are usually 
described by huge amounts of data, parameters 
and often have chaotic behavior. To reveal 
interrelations among these parameters new 
methods and algorithms of computer analysis 
have to be developed. These problems are of 
exceptional interest now when computer 
technologies provide enormous possibilities for 
collecting, storing and processing of 
information obtained by tracing system 
behavior. It is believed that this information is 
particularly important for the prediction of the 
system behavior. In this case researchers 
dealing with such types of systems often try to 
apply statistical or neural networks methods for 
the discovery of new knowledge about the 
system. In framework of this approach self-
adjustable method known as self-organization 
methods are especially interesting because they 
could be applied in autonomous regime without 
external setting for every particular case. In this 
article we use two types of self-organization 
methods for investigation of financial market 
behavior by analyzing data series The study of  

 

the system behavior is a very important and 
actual question. 

  
 
2 Problem Formulation 
 

Many classical approaches and methods are 
pushed to, or even beyond their limits by the 
sheer size of the sensor data and by the high 
frequency of their arrival. Once sensor data 
have been monitored, pre-processed and 
temporarily stored using data base technology, 
their further analysis, however, is at present left 
to specialized, domain-dependent software 
packages.  Evaluation algorithms for sensor 
data communicate with the data base hosting 
the data via  languages like SQL for retrieval 
purposes only, but are themselves entirely 
coded in traditional imperative and object-
oriented languages.  This kind of reduction of 
data base technology to a subordinate role as 
pure data producer and its exclusion from the 
much more interesting and rewarding field of 
data analysis is challenged by our approach.  
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3 Self-organizing methods 

2.1 SOM 

The SOM is an unsupervised-learning neural-
network method that provides a similarity graph 
of input data. A typical simplified version of the 
SOM algorithm consists of two steps iterated 
for every sample: finding the best matching 
units and adaptation of the weights.  

 

Initially all neuron weights are initialized by 
uniform distribution on the interval[0 1], . The 
distance between two neurons of the two-
dimensional grid is found as  
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where j  is the index of neuron in the net, i  is 
the dummy index of vector components, ijw  is 
the weight of synapse, which matches i  - 
component of input vector with output neuron 
j . Thus, we find for each vector x  such a 

neuron c , for which the distance between x  and 
c  is the smallest  
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Vectors of weights jw  are adapted using the 
following rule  
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where cN  describes the neighborhood 
of”neuron-winner” (3), ( )tα  is the learning-rate 
factor, which decreases monotonously with the 
regression steps, ( )cjh t  is a scalar multiplier 
called the neighborhood function. Thus, training 
process leads to reduction of the distance 
between input signal and position of ”neuron-
winner” as well as to the reduction of the 

Euclidean distance between input vector and 
any vector j cw j N, ∈ . The SOM-map is 
obtained as the result of this mapping of vector 
x on neurons plane. Similar input vectors are 
placed closely to each other on the SOM-map. 
Such procedure makes it possible to single out 
the input information and locate the input 
vectors in the vicinity of similar vectors on the 
map without preliminary training, using only 
internal properties of input data. Next 
processing of the input data by chosen rule (4) 
leads to the neuron-grids training and formation 
of corresponding clusters.  

 

2.2 GMDH 

Dynamics of data streams behavior can be 
analyzed by methods of multiple regression [8]. 
But these methods take into account the whole 
set of input data and overload the final model 
(equation of regression). Self-organizing 
algorithms do not have this disadvantage. 
Group Method of Data Handling (GMDH) 
creates the model that includes only the most 
influential variables [7, 11]. The GMDH 
algorithms are based on a sorting-out procedure 
of model simulation and provide the best model 
according to the criterion given by the 
researcher. This model describes relations 
between their elements and the state of the 
whole system. Most of GMDH algorithms use 
polynomial referenced functions. General 
connections between input and output variables 
can be shown by Volterra functional series. A 
discrete analogue of Volterra series is 
Kolmogorov-Gabor polynomial  

 

0
1 1 1 1 1 1

N N N N N N

i i ij i j ijk i j k
i i j i j k

y a a x a x x a x x x
= = = = = =

= + + + + ...,∑ ∑∑ ∑∑∑
 (5) 

where y  - output variable vector, 1 2( )Nx x x, , ...,  
- input data,   

1( )N ij ijka a a a, ..., ,..., , ..., , ...  - vector of 
coefficients or weights. Input data might consist 
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of independent variables, functional expressions 
or finite residues. The key feature of GMDH 
algorithms is a partition of input data into two 
subsets. The first one is used to compute 
coefficients of the polynomial using the list 
square technique and to evaluate internal error 
by some criterion. The second one is used to 
calculate external error using information, 
which is not applied for the coefficients 
computations. Principles of self-organization 
manifest themselves in rationalization of 
optimal polynomial search. Internal criterion 
monotonously decreases when complexity of 
polynomials increases, simultaneously external 
criterion passes its minimum. Then it is possible 
to choose polynomial of optimal complexity, 
which is unique for this criterion. In other 
words, we provide sorting-out procedure for 
partial polynomials to find polynomial of 
optimal complexity (optimal model). It shows 
the dependence of the output variable on the 
most influential variables, which are chosen 
from all input variables. External criterion 
reaches its minimum on optimal model. 
Interpretation of the results is similar to 
multiple regression logic: the bigger is the 
coefficient - the more influential is the variable 
near it.  
 
 
4 Conclusion 

The results obtained by SOM algorithm are 
sufficiently demonstrative and make it possible 
to understand relationships inherent to such a 
complex system like stock market. The GMDH 
algorithm, in its turn, makes it possible to 
establish analytical dependence of the stock 
prices of the companies, which have correlated 
behavior. The introduced self-organizing 
methods complement each other. The obtained 
results are self-consistent and allow finding an 
optimal non-overloaded model, which is easy 
for economic interpretation. Using the 
combination of such methods promises to be 
very perspective.  
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