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CS 14315, 35043 Rennes Cédex, France.

Abstract: This paper considers the nonlinear optimal control governed by a Pennes transient bioheat transfer type model

with Robin boundary conditions. The control estimate the blood perfusion rate and the heat transfer parameter, which

affect the effects of thermal physical properties on the transient temperature of biological tissues. The result can be very

beneficial for thermal diagnostics in medical practices. Existence and the uniqueness of the solution is proved as well as

stability under mild assumptions. Afterwards the optimal control problem is formulated. An optimal solution is proven

to exist and, finally necessary optimality conditions are given.
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1 Introduction

1.1 Statement of the problem

The goal of this contribution is the study of op-
timal control problems related to the effects of
thermal physical properties on the transient tem-
perature of biological tissues, using a Pennes tran-
sient bioheat transfer type model. It involves the
temperature distribution u. The time evolution
of u is governed by the following system

∂u

∂t
= div(κ(x)∇u) − p(u− ua)

+F (x, t, u) + f, a.e. in Q = Ω × (0, T ),
subjected to the boundary conditions
∂u

∂n
= q(uout − u) in Σ = ∂Ω × (0, T ),

and the initial conditions
u(0) = u0 in Ω,

(1)

under the pointwise constraints

a ≤ p(x, t) ≤ b a.e.(t, x) ∈ Q,
c ≤ q(x, t) ≤ d a.e.(t, x) ∈ Q.

(2)

where Ω is an open bounded domain in IRm,
m ≤ 3 with a smooth boundary ∂Ω of class C∞,
∂.
∂n = (κ∇.).n, n being the outward normal to
Γ = ∂Ω, and a,b,c,d are given positive constants.
p is the blood perfusion rate and q describes the
heat transfer coefficient. The heat capacity is as-
sumed to be constant and thermal conductivity
of tissue κ is assumed to be variable and satisfies

κ = σ2 ≥ µ > 0. The second term in the right of
equation (1) describes the heat transport between
the tissue and microcirculatory blood perfusion,
the third term F is the body heating fonction
which describes the physical properties of mater-
ial. The source term f describes the specific ab-
sorption rate, ua is the blood temperature and
uout is the bolus temperature. The function u0 is
the initial value and is assumed to be in C0(Ω).

The use of microwave radiation orifor heat-
ing is now common in many industrial situations
such smelting, sintering and drying; it also has
many applications in interdisciplinary research
areas, in joining mathematical, biological and
medical fields, especially in clinical cancer ther-
apy hyperthermia. Recently bioheat model have
been the object of numerous studies (see e.g.
[2, 4, 5, 6, 7, 9, 12, 13, 14, 15, 16] and the refer-
ences therein). For the optimal control problems,
we can mention [8] in which the authors have op-
timal results for bilinear elliptic bioheat transfer
equation.

The new feature introduced in this works
concerns the study of optimal control problems
of nonlinear evolutive bioheat transfer systems,
where the control acts in the state equation and
in the boundary condition. The introduction of
the nonlinear term F , in the bioheat system, is
very important, because the physical properties
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of material have power law dependence on tem-
perature (see [12]). The main result of the paper
includes the existence of an optimal control and
the first order necessary conditions of optimality.

1.2 Assumptions and notations

We suppose that the body heating coefficient F
satisfies

(H) F is a Carathéodory function from Q×IR
into IR. For almost all (x, t) ∈ Q, F (x, t, .) is
Lipschitz and bounded function with

(i) | F (x, t, r) |≤M1, ∀ r ∈ IR and a.e. in Q,
(ii) F is differentiable. The partial derivative

F ′
x(., ., r) and G = F ′

r(., ., r) are Lipschitz contin-
uous in Q for all r ∈ IR, and are globally bounded
in Q× IR.

Remark 1 For ul be a sequence converging to-
ward u in W(Q) weakly and in L2(Q) strongly we
prove easily that F (., ., ul) −→ F (., ., u) in Lp(Q)
strongly ∀p ∈ [1,+∞).

For any pair of real numbers r, s ≥ 0, we in-
troduce the Sobolev space Hr,s(Q) defined by
Hr,s(Q) = L2(0, T,Hr(Ω)) ∩ Hs(0, T, L2(Ω)),
which is a Hilbert space normed by

(

∫ T

0
‖ v ‖2

Hr(Ω) dt+ ‖ v ‖2
Hs(0,T,L2(Ω)))

1/2,

where Hs(0, T, L2(Ω)) denotes the Sobolev space
of order s of functions defined on (0, T ) and taking
values in L2(Ω), and defined byHs(0, T, L2(Ω)) =
[Hm(0, T, L2(Ω)), L2(Q)]θ, where θ ∈ (0, 1), s =
(1 − θ)m, m is an integer and Hm(0, T, L2(Ω)) =

{v ∈ L2(Q)| ∂
jv
∂tj

∈ L2(Q),∀j = 1,m}.

Remark 2 Let Ω ⊂ IRm, m ≥ 1, be an open
and bounded set with a smooth boundary and q
be a nonnegative integer. We have the following
results (see e.g. [1])

(i) Hq(Ω) ⊂ Lp(Ω), ∀p ∈ [1, 2m
m−2q ], with

continuous embedding (with the exception that if
2q = m, then p ∈ [1,+∞[ and if 2q > m, then
p ∈ [1,+∞] ).

(ii) (Gagliardo-Nirenberg inequalities) There
exists C > 0 such that

‖ v ‖Lp≤ C ‖ v ‖θHq‖ v ‖1−θ
L2 ,∀v ∈ Hq(Ω),

where 0 ≤ θ < 1 and p = 2m
m−2θq (with the excep-

tion that if q−m/2 is a nonnegative integer, then
θ is restricted to 0).

We can now introduce the following spaces:
H(Q) = L∞(0, T, L2(Ω)),V(Q) = L2(0, T,H1(Ω)),
W(Q) = L2(0, T,H1(Ω)) ∩H1(0, T, (H1(Ω))

′

); it
is well-known that W is continuously embedded
in C([0, T ], L2(Ω))(see e.g. [10]).

The set of the admissible controls describing
the constraints is
Uad = {(p, q) ∈ L2(Q)×L2(Σ)|a ≤ p ≤ b a.e. in Q

and c ≤ q ≤ d a.e. in Σ}.

Although Uad is a subset of L∞(Q) × L∞(Σ),
we prefer to use the standard norms of the space
L2(Q) × L2(Σ). The reason is that we would like
to take advantages of the differentiability of the
latter norm away from the origin to perform our
variational analysis.

Now we introduce the following objective
functional

J(p, q) = 1
2 ‖ γ(u− uobs) + δ(p− pobs) −m ‖2

L2(Q)

+α
2 ‖ p− pr ‖2

L2(Q) +β

2 ‖ q − qr ‖2
L2(Σ),

(3)

where the functions γ, δ are positives with space
dependent entries and L∞(Ω), the functionm is in
L2(Q) and is corresponding to the online temper-
ature control via radiometric temperature mea-
surement system. The constants α ≥ 0 and β ≥ 0
with α + β > 0, are chosen as constants to es-
tablish the relative weight of the second and the
third term in (3). The coefficients α and β may
be interpreted as measures of the price of the con-
trol. The functions uobs and pobs are known offsets
and are given by measurement results. The term
(pr, qr) is a given reference data.

The paper is concerned with the following op-
timal control problem: Find an admissible control
(p∗, q∗) ∈ Uad such that

(p∗, q∗) is a minimum of the cost functional J
subject to system (1) and state constraints (2).

(4)

Such a pair (p∗, q∗) is called an optimal solution
to (or an optimal strategy pair for) the problem
(4).

The rest of the paper is organized as follows.
In the next section, we present the existence and
the uniqueness of the solution of the problem (1)
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and obtain a stability result. In section 3, we
study the optimal control problem corresponding
to obtain the minimization of the objective func-
tional J . The functional J is depending on the
control (p, q) and the solution u in the domain Ω
over the time interval under consideration [0, T ].
We prove the existence of an optimal solution and
give necessary optimality conditions. We derive
the optimality system by differentiating the cost
functional with respect to the control and evalu-
ate the result at an optimal control.

2 Existence and stability results

Definition: A function u ∈ W is a weak solution
of system (1) provided (∀v ∈ H1(Ω) and a.e. in
(0, T ))

<
∂u

∂t
, v > +

∫
Ω

κ∇u.∇vdx

−

∫
Γ

q(uout − u)vdΓ +

∫
Ω

p(u − ua)vdx

=

∫
Ω

F (x, t, u)vdx +

∫
Ω

fvdx,

u(0) = u0 in Ω,

(5)

here < ., . > denotes the duality between
(H1(Ω))′ and H1(Ω).

Theorem 1 (i) Let be given the initial condi-
tions u0 in C0(Ω) and source terms (p, q, f) in
Uad × L2(Q). Then there exists a unique solu-
tion u in W(Q) of (1).
(ii) Let (pi, qi), i=1,2 be two pairs of Uad. If
ui ∈ W(Q) is the solution of (1) corresponding
to data (pi, qi, u0, f), i=1,2, then

‖ u1−u2 ‖2
W(Q)≤ c(‖ p1−p2 ‖2

L2(Q) + ‖ q1−q2 ‖2
L2(Σ)).

Proof. To obtain the existence of the solution we
set v = u and obtain some a priori estimates. The
prove is completed by implementing the Galerkin
method, taking advantage of the obtained esti-
mates, using the hypothesis (H1) and using the

continuous mapping from H1/2+s(Ω) into L2(Γ),
0 < s < 1/2, see e.g. [11] (to pass to the limit
in the boundary term). To obtain the uniqueness
result, we suppose that there exist two solutions
u1, u2 of (1). Then u = u1 − u2 is solution of the
following problem

∂u

∂t
− div(κ∇u) + pu = F (x, t, u1) − F (x, t, u2) in Q,

∂u

∂n
= −qu in Σ,

u(0) = 0 in Ω.

By using the hypothesis (H1) and the regularity
of p, q we prove easily that u1 = u2 and then the
uniqueness result.

To prove the estimate given in (ii), we set
p = p1 − p2, q = q1 − q2 and u = u1 − u2. Then u
is the solution of

∂u

∂t
− div(κ∇u) + p(u2 − ua) + p1u

= F (x, t, u1) − F (x, t, u2) in Q,
∂u

∂n
= q(uout − u2) − q1u in Σ,

u(0) = 0 in Ω.

By multiplying the previous system by u and
integrating over Ω × (0, T ) (by using Green’s for-
mula), this gives

1

2
‖ u(., t) ‖2

L2(Ω) +

∫ t

0

‖ σ∇u ‖2
L2(Ω) +

∫ t

0

∫
Ω

p1u
2dxds

+

∫ t

0

∫
Γ

q1u
2dxds = −

∫ t

0

∫
Ω

p(u2 − ua)udxds

+

∫ t

0

∫
Ω

(F (x, t, u1) − F (x, t, u2))udxds

+

∫ t

0

∫
Γ

q(uout − u2)udxds.

According to the regularity of ui, i = 1, 2, pi, i =
1, 2, qi, i = 1, 2, ua and uout, and to the hypothesis
(H1) we have (by using Gronwall’s formula)

‖ u ‖H(Q)∩V(Q)≤ c(‖ p ‖2
L2(Q) + ‖ q ‖2

L2(Σ)).

By using (5), Green’s formula and the previous
estimate, we can deduce the following estimate

‖ u ‖2
W(Q)≤ c(‖ p ‖2

L2(Q) + ‖ q ‖2
L2(Σ))

and then the result (ii).

3 Optimal control problem

Introduce now the following mapping F : Uad −→
W(Q), which maps the source term (p, q) ∈ Uad
of (1) into the corresponding solution u in W(Q).

We first state and prove the existence theorem
of the optimal solution.

Theorem 2 There exists an optimal control
(p∗, q∗) ∈ Uad and u∗ ∈ W(Q) such that (p∗, q∗) is
defined by (4) and u∗ = F(p∗, q∗) is the solution
of (1).

2005 WSEAS Int. Conf. on DYNAMICAL SYSTEMS and CONTROL, Venice, Italy, November 2-4, 2005 (pp7-12)



Proof. Let (pn, qn, un) be a minimizing se-
quence such that: lim infn⇀∞ J(pn, qn) =
inf(φ,ψ)∈Uad

J(φ,ψ) and un be the state corre-
sponding to (pk, qk). Then the sequence (pn, qn) is
uniformly bounded in Uad. By using the estimate
of theorem 1 we obtain un is uniformly bounded
in W(Q). This result makes it possible to extract
from (pn, qn, un) a subsequence also denoted by
(pn, qn, un) and such that (pn, qn) ⇀ (p, q) weakly
in Uad and un ⇀ u weakly in W(Q). By using
[10] we have that un −→ u strongly in L2(Q).
By passing to the limit we obtain easily that u
is the unique solution of (1) and that J(p, q) ≤
lim inf
n−→∞

J(pn, qn). We can conclude that J(p, q) =

inf(φ,ψ)∈Uad
J(φ,ψ). This proves the existence of

an optimal control (p, q, u).2

Now, let us derive the following optimality
conditions for the solutions to Problem (4) by dif-
ferentiating the cost functional J and the operator
solution F , with respect to the control (p, q) at an
optimal control.

We are now going to show the differentiability
result of the operator solution F .

Proposition 1 Given the initial conditions u0 in
C0(Ω), then the function F is continuously differ-
entiable from Uad to W(Q) in the following sense:
F(p+ εh, q + εk) −F(p, q)

ε
⇀ w weakly in W(Q)

as ε −→ 0 for (h, k) ∈ L∞(Q)× L∞(Σ) such that
(p + εh, g + εk) ∈ Uad. Furthermore, the deriva-
tive F ′(p, q) : (h, k) −→ w is the unique solution
of the following linear problem

∂w

∂t
− div(κ∇w) + h(u− ua)

+pw = G(x, t, u)w in Q,
subjected to the boundary conditions
∂w

∂n
= k(uout − u) − qw in Σ,

and the initial conditions
w(0) = 0 in Ω.

(6)

Proof. By using a similar argument as in the proof
of theorem 1 and the regularity of (p, q, u), we can
obtain the existence and uniqueness of w, the so-
lution of (6).
Set u = F(p, q) and uε = F(p+ εh, q + εk) + εwε.
According to the equations satisfied by u and uε,

we have that wε satisfies the linear problem

∂wε

∂t
− div(κ∇wε) + h(u− ua) + (p+ εh)wε

= F (x,t,uε)−F (x,t,u)
ε

in Q,
∂wε

∂n
= k(uout − u) − (q + εk)wε in Σ,

wε(0) = 0 in Ω.

(7)

By using a similar argument as in the proof of
theorem 1 and the regularity of (p, q, u), we can
obtain the following estimate

‖ wε ‖
2
W(Q)≤ C(‖ h ‖2

L2(Q) + ‖ k ‖2
L2(Σ)),

for some constant independent of ε. It is easily
follows that, by using the same arguments as the
proof of theorem 2, wε ⇀ w weakly in W(Q) as
ε −→ 0, where w is the unique solution of (6) and
then the result of the theorem. 2

Now, we give the characterization of the opti-
mal control problem. For this, we introduce the
following adjoint problem corresponding to the
primal problem (1) (we denote by u = F(p, q)).

−
∂ũ

∂t
− div(κ∇ũ)

+γ(γ(ũ− uobs) + δ(h− pobs) −m)
+pũ = G(x, t, u)ũ in Q,

subjected to the boundary conditions
∂ũ

∂n
= −qũ in Σ,

and the final conditions
ũ(T ) = 0 in Ω.

(8)

Remark 3 To prove the existence of a unique
solution ũ ∈ W(Q), we change the variables of
problem (8) by reversing the sense of time, i.e.
t := T − t, and we apply a similar argument as in
the proof of theorem 1.

We can now give the first-order optimality condi-
tions for the optimal control problem (4).

Theorem 3 Let (p∗, q∗) be an optimal control
and u∗ ∈ W(Q) such that (p∗, q∗) is defined by
(4) and u∗ = F(p∗, q∗) solution of (1). Then (for
(h, k) ∈ L∞(Q) × L∞(Σ))∫∫

Q

((u∗ − ua)ũ∗ + α(p∗ − pr))hdxdt

+

∫∫
Q

δ(γ(u∗ − uobs) + δ(p∗ − pobs) −m)hdxdt ≥ 0,∫∫
Σ

(−(uout − u∗)ũ∗ + β(q∗ − qr))kdxdt ≥ 0,

where ũ∗ is the solution of the adjoint problem
(8), corresponding to the primal solution u∗.
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Proof. Let (p∗, q∗) ∈ Uad be an optimal solution,
i.e. the corresponding solution of problem (4) and
u∗ = F(p∗, q∗) the solution of problem (1). From
Proposition 1 we know that F is differentiable.
Therefore

J ′(p, q).(h, k) =
d

dλ
J(p+ λh, q + λk)|λ=0

=

∫∫
Q

(γ(u− uobs) + δ(p− pobs) −m)(γw + δh)dxdt

+α

∫∫
Q

(p− pr)hdxdt + β

∫∫
Q

(q − qr)kdxdt,

where w = F ′(p, q).(h, k) is the solution of prob-
lem (6).

Multiplying (6) by ũ, using Green’s formula
and integrating by time we obtain (according to
the second and third parts of (6))∫∫

Q

(−
∂ũ

∂t
− div(κ∇ũ) + pũ−G(x, t, u)ũ)wdxdt

= −

∫∫
Q

h(u− ua)ũdxdt+

∫∫
Σ

k(uout − u)ũdxdt

−

∫
Ω

ũ(T ).w(T )dx.

Since ũ is solution of (8) we have that∫∫
Q

h(u− ua)ũdxdt−

∫∫
Σ
k(uout − u)ũdxdt

=

∫∫
Q

γ(γ(ũ − uobs) + δ(h − pobs) −m)wdxdt.

According to the expression of J ′(p, q) we can
deduce that

J ′(p, q).(h, k) =

∫∫
Q

((u−ua)ũ+α(p− pr))hdxdt

+

∫∫
Q

δ(γ(u − uobs) + δ(p − pobs) −m)hdxdt

+

∫∫
Σ
(−(uout − u)ũ+ β(q − qr))kdxdt.

Since (p∗, q∗) is an optimal solution we have

∂J

∂p
(p∗, q∗).h ≥ 0 and

∂J

∂g
(f∗, g∗).k ≥ 0,

and then∫∫
Q

δ(γ(u∗ − uobs) + δ(p∗ − pobs) −m)hdxdt

+

∫∫
Q

((u∗ − ua)ũ
∗ + α(p∗ − pr))hdxdt ≥ 0,∫∫

Σ

(−(uout − u∗)ũ∗ + β(q∗ − qr))kdxdt ≥ 0,

(9)

where ũ∗ is the solution of the adjoint problem
(6) corresponding to the solution u∗.
This completes the proof.

4 Conclusion

In this article we have discussed the problem of
estimate parameters of parabolic systems with
Robin boundary conditions, which describe the
bioheat equation in order to show the effects of
the microwave heating on the thermal states of
biological tissues.

The existence of a solution of the governing
nonlinear system of equations is established and
the Lipschitz continuity of the map solution is
obtained. The differentiability and some proper-
ties of the map solution are proved. Afterwards,
an optimal control problem has been formulated.
Under suitable hypotheses, it is shown that one
has existence of an optimal solution and the ap-
propriate necessary optimality conditions for an
optimal solution are derived. These conditions
are obtained in a Lagrangian form.

Some numerical methods and other choices of
control variables will be presented in a forthcom-
ing paper [3].
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