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Abstract

In this paper, we consider optimal control problems which are related to phase-field model. The goal of this study
is to reach a given target set, by a phase trajectory, of a model describing the process of non-isothermal solidifica-
tion, under action of disturbances. Firstly optimal control problems are formulated. Afterwards the existence and
the uniqueness of the solution of the perturbed problem is proved along with stability under mild assumptions. An
optimal solution is proven to exist and, finally, we give necessary optimality conditions.

Key words. Phase-field model, non-isothermal solidification, optimal control, necessary conditions
of optimality, data assimilation

AMS subject classification. 49J20, 49J50, 35K55, 49K35, 35B45

1 Introduction

The aim of this contribution is the study of opti-
mal control problems related to non-isothermal solid-
ification, using a phase-field model. It involves tem-
perature U and a phase-field variable φ which varies
sharply but smoothly, between 0, in the solid phase
and 1, in the liquid phase, over a thin layer which sep-
arates the two phases. The time evolution of (φ,U) is
governed by the following system:

∂φ

∂t
− ν∆φ = F1(x, t, φ)

+(U − Ua)F2(x, t, φ) in Q,

∂U

∂t
+ α

∂φ

∂t
− µ∆U = f in Q,

subjected to the boundary conditions

∂φ

∂n
=
∂U

∂n
= 0 in Σ = ∂Ω× (0, T ),

and the initial conditions

φ(0) = φ0, U(0) = U0 in Ω,

(1)

where Q = Ω× (0, T ), Ω is an open bounded domain
in IRm, m ≤ 3, with a smooth C∞ boundary ∂Ω, n
is the unit normal to ∂Ω, α, µ, ν are given positive
constants and Ua, the temperature at melting points,
belongs to the space

L∞a (Q) := {v ∈ L2(Q) | a1 ≤ v ≤ a2 a.e. in Q},

where a1 and a2 are given positive constants.
Various problems associated with the phase-field

models have been studied over the last years (see e.g.
[5, 6, 7, 10, 13, 4] and the references therein). For the
optimal control problems associated with the phase-
field models, we can mention [9] in which the phase
transitions of pure materials due to thermal effects are
analyzed, [2] in which the author considers a robust
control problem for a phase-field model of isothermal
solidification of a binary alloy. Here, we consider an

optimal control problem of a more general phase-field
model of non-isothermal solidification, in order to take
into account the influence of noise on data. Actu-
ally, during solidification of metals, the solid/liquid
interface becomes unstable with respect to small per-
turbations caused by the introduction of fluctuation
terms. In this paper we consider that a control, rep-
resented by f , is applied to the system and that the
temperature Ua is not accurately known. Therefore,
using the classical output least square formulation we
may consider that Ua also plays the role of a control
variable. On the other hand we will assume that the
initial conditions (U0, φ0) are not accurately known
(data assimilation).

1.1 Assumptions and notations

We denote by V = H1(Ω) and V ′ the dual of
V . We denote by <,>V ′,V the duality product be-
tween V ′ and V . As usual, for any non negative
integer m, we define the space Hm(0, T, L2(Ω)) ={
v ∈ L2(Q) | ∂jv

∂tj ∈ L2(Q), j = 1, . . . ,m
}

. Then, for
any pair of real number r, s ≥ 0, we may intro-
duce the Sobolev space Hr,s(Q) = L2(0, T,Hr(Ω)) ∩
Hs(0, T, L2(Ω)), which is a Hilbert space normed by(∫ T

0

‖ v ‖2Hr(Ω) dt+ ‖ v ‖2Hs(0,T,L2(Ω))

)1/2

,

where Hs(0, T, L2(Ω)) = [Hm(0, T, L2(Ω)), L2(Q)]θ,
where θ ∈ (0, 1), s = (1− θ)m.

Remark 1 For v ∈ Hr,s(Q) the trace functions of v:
∂jv
∂nj on Σ = ∂Ω × (0, T ) for an integer j such that
j ∈ [0, r − 1

2 ] exist and satisfy ∂jv
∂nj ∈ Hrj ,sj (Σ) where

rj = r−j− 1
2 and sj = s(r−j−1/2)

r . Moreover the func-
tions v 7→ ∂jv

∂nj are continuous linear mappings from
Hr,s(Q) into Hrj ,sj (Σ) (see e.g. [12]).
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Lemma 1 Let Ω ⊂ IRm, m ≥ 1, be an open and
bounded set with a smooth boundary and q be a non-
negative integer. We have the following results
(i) Hq(Ω) ⊂ Lp(Ω), ∀p ∈ [1, 2m

m−2q ], with continuous
embedding (with the exception that if 2q = m, then
p ∈ [1,+∞[ and if 2q > m, then p ∈ [1,+∞] ).
(ii) (Gagliardo-Nirenberg inequalities) There exists
C > 0 such that

‖ v ‖Lp≤ C ‖ v ‖θ
Hq‖ v ‖1−θ

L2 ,∀v ∈ Hq(Ω),

where 0 ≤ θ < 1 and p = 2m
m−2θq (with the excep-

tion that if q −m/2 is a nonnegative integer, then θ
is restricted to 0).

For the proof of this lemma see, for instance, Adams
[1].

We can now introduce the following spaces:
Hi = L∞(0, T,Hi−1(Ω)), Vi = L2(0, T,Hi(Ω)),
Wi = Hi ∩ Vi, (for i = 1, 2), H1

2 = H1(0, T, L2(Ω)),
H1

1 = H1(0, T, V ′) and W1
i = H1

i ∩ Vi, (for i = 1, 2).

Remark 2 (i) W1
i is compactly embedded into Vi−1,

for i = 1, 3 (see e.g. [14]).
(ii) W1

i ⊂ C0([0, T ],Hi−1(Ω)), for i = 1, 3 (see e.g.
[12]).

Definition 1 A real valued function Φ defined on
Q×IRq, q ∈ IN∗, is a Carathéodory function iff Φ(.,v)
is measurable for all v ∈ IRq and Φ(x, t, .) is continu-
ous for almost all (x, t) ∈ Q.

Now we state the main hypotheses on Fi, i = 1, 2:
(H1) Fi is a Carathéodory function on Q×IR. For al-
most all (x, t) ∈ Q, Fi(x, t, .) is Lipschitz and bounded
satisfying :

(i) |Fi(x, t, r)| ≤M1, ∀r ∈ IR and a.e. in Q,
(ii) Fi is differentiable. The partial derivative

F ′ix(., ., r) and Gi = F ′ir(., ., r) are Lipschitz contin-
uous in Q, for all r ∈ IR, and are globally bounded in
Q× IR.

(iii) F ′ix.n = 0, on Σ.

Remark 3 If U and φ are sufficiently regular and
satisfy ∂U

∂n = ∂φ
∂n = 0 then, thanks to (H1)(ii), we

have ∇(F1(x, t, φ)).n = ∇(UF2(x, t, φ)).n = 0.

The paper is organized as follows. In the next sec-
tion, we give some preliminary results. In section 3,
we prove that system (1) has a unique solution and
we obtain a stability result. In section 4, we introduce
the perturbed problem and, in section 5, we study
the Fréchet differentiability of the solution with re-
spect to perturbations, this property being necessary
to analyse the optimal control problem. In section 6,
we study the optimal control problem by introducing

a minimization problem for a given functional which
depends on control variables. The existence of an op-
timal solution is proven and necessary optimality con-
ditions are given. The optimality system requires cal-
culation of gradients which are also necessary to elab-
orate a numerical algorithm which solves the optimal
control problem.

From now on we will always denote by C some pos-
itive constant which may be different at each occur-
rence. Now we give the weak formulation associated
to system (1).
Multiplying the first part of (1) by v ∈ V and the sec-
ond part by q ∈ V and integrating over Ω lead to the
classical weak formulation :

∫
Ω

∂φ

∂t
vdx+ ν

∫
Ω

∇φ.∇vdx =

∫
Ω

F1(., t, φ)vdx

+

∫
Ω

(U − Ua)F2(., t, φ)vdx,∫
Ω

∂U

∂t
qdx+ α

∫
Ω

∂φ

∂t
qdx+ µ

∫
Ω

∇U.∇qdx

=

∫
Ω

fqdx,

(φ(0), U(0)) = (φ0, U0)

(2)

Now we are going to show that system (2) has a
unique solution.

2 State system

2.1 Existence and stability results

Theorem 1 Let assumption (H1) be fulfilled.
For any (φ0, U0) ∈ (L2(Ω))2 and (f, Ua) ∈ (L2(Q))2,
there exists a weak solution (φ,U) of (2) such that
(φ,U) ∈ (W1

1 )2.

Proof. Existence of a solution results from the classi-
cal Faedo-Galerkin method. Thanks to the properties
of the different terms appearing in the weak formula-
tion and under the previous assumptions, we obtain
a priori estimates sufficient to prove the convergence
of the approximate solution (Um, φm) for the weak
topology of L2(0, T,H1) and the weak-star topology
of L∞(0, T, L2). Then we obtain the existence of a
solution. For more details we refer to [3].

Theorem 2 Let assumption (H1) be fulfilled.
For any (φ0, U0) ∈ (H1(Ω))2 and (f, Ua) ∈ L2(Q) ×
L∞a (Q), there exists a unique pair of functions
(φ,U) ∈ W1

2 ×W1
2 solution of system (2). Moreover,

we have the following stability result:
Let (φ01, U01, f1, Ua1) and (φ02, U02, f2, Ua2) be two
functions of (H1)2×L2(Q)×L∞a (Q). Let (φ1, U1) and
(φ2, U2) be two functions of W1

2 (Q) solutions of (1).
Then if (φ1, U1) (resp. (φ2, U2)) is solution of (1) with
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the data (φ01, U01, f1, Ua1) (resp. (φ02, U02, f2, Ua2)),
we have the following estimates:

‖φ‖2W1
2

+ ‖U‖2W1
2
≤

C(‖ φ0 ‖2H1 + ‖ U0 ‖2H1 + ‖ f ‖2L2(Q) + ‖ Ua ‖2L2(Q)),

where φ = φ1 − φ2, U = U1 − U2, φ0 = φ01 − φ02,
U0 = U01 − U02, f = f1 − f2 and Ua = Ua1 − Ua2.

For the proof, we again refer to [3].

Remark 4 If we suppose that, for almost all (x, t) ∈
Q, F1(x, t, .) = F2(x, t, .) = 0 in ] −∞, 0] ∪ [1,+∞[,
then, for the initial data φ0 is such that 0 ≤ φ0 ≤ 1,
a.e. in Ω, the weak solution φ ∈ W1

1 of (2) satisfies,
for all t ∈ (0, T ): 0 ≤ φ(., t) ≤ 1, a.e. in Ω (see [3]).

3 Perturbed problem

Below, the solution U = (φ,U) of system (1), with the
data (φ0, U0, f, Ua), will be treated as the target func-
tion. Thus we are interested in the optimal regulation
of the deviation of the state from the desired target U.
Now we are going to analyse the full nonlinear equa-
tions which govern large perturbations u = (ϕ, u) to
the target : this means that U + u is solution of (1),
with the data (φ0 +ϕ0, U0 +u0, f+ f̃ , Ua +ua). Hence
we consider the following system:

∂ϕ

∂t
− ν∆ϕ = (F1(x, t, ϕ+ φ)− F1(x, t, φ))

+(u− ua)F2(x, t, ϕ+ φ)
+(U − Ua)(F2(x, t, ϕ+ φ)− F2(x, t, φ)) in Q,

∂u

∂t
+ α

∂φ

∂t
− µ∆u = f̃ in Q,

∂ϕ

∂n
=
∂u

∂n
= 0 in Σ,

(ϕ(0), u(0)) = (ϕ0, u0) in Ω.

(3)

We notice that regularity of U is given by theorem 2.
If we set F̃1(x, t, ϕ) = F1(x, t, ϕ + φ) − F1(x, t, φ),
F̃2(x, t, ϕ) = F2(x, t, ϕ + φ), Va = U − Ua, then (3)
is reduced to

∂ϕ

∂t
− ν∆ϕ = F̃1(x, t, ϕ) + (u− ua)F̃2(x, t, ϕ)

+Va(F̃2(x, t, ϕ)− F̃2(x, t, 0)) in Q,

∂u

∂t
+ α

∂ϕ

∂t
− µ∆u = f̃ in Q,

∂ϕ

∂n
=
∂u

∂n
= 0 in Σ,

(ϕ(0), u(0)) = (ϕ0, u0) in Ω.

(4)

Remark 5 (i) We easily verify that (F̃i, i = 1, 2) sat-
isfy an hypothesis similar to (H1).

(ii) If U ∈ W1
2 et Ua ∈ L∞a (Q) then U ∈

L∞(0, T,H1) ⊂ L∞(0, T, L6) and Va = U − Ua ∈
L∞(0, T, L6).
(iii) For sake of simplicity, we omit the ”˜” on (f̃ , F̃ )
for (4).

Now we give the weak formulation associated to sys-
tem (4).
Multiplying the first part of (4) by v ∈ V and the sec-
ond part by q ∈ V and integrating over Ω and using
the third part of (4) give the classical weak formula-
tion:



∫
Ω

∂ϕ

∂t
vdx+ ν

∫
Ω

∇ϕ.∇vdx =

∫
Ω

F1(., t, ϕ)vdx

+

∫
Ω

(u− ua)F2(., t, ϕ)vdx

+

∫
Ω

Va(F2(., t, ϕ)− F2(., t, 0))vdx,∫
Ω

∂u

∂t
qdx+

∫
Ω

µ∇u.∇qdx+ α

∫
Ω

∂ϕ

∂t
qdx

=

∫
Ω

fqdx,

(ϕ(0), u(0)) = (ϕ0, u0).

(5)

With a proof similar to that of theorem 2, we have
the following results:

Theorem 3 Let assumption (H1) be fulfilled. Then
For any (ϕ0, u0) ∈ (H1(Ω))2 and (f, ua, Va) ∈
L2(Q)× L∞a (Q)× L∞(0, T, L6), there exists a unique
pair of functions (ϕ, u) ∈ W1

2 × W1
2 solution of sys-

tem (4). Moreover if (ϕ1, u1) (resp. (ϕ2, u2)) is so-
lution of (4) with the data (ϕ01, u01, ua1, f1) (resp.
(ϕ02, u02, ua2, f2)) in (H1)2×L∞a (Q)×L2(Q), we have
the following estimate:

‖ϕ‖2W2
2

+ ‖u‖2W2
2
≤

C
(
‖ ϕ0 ‖2H1 + ‖ u0 ‖2H1 + ‖ f ‖2L2(Q) + ‖ ua ‖2L2(Q)

)
,

where ϕ = ϕ1 − ϕ2, u = u1 − u2, ϕ0 = ϕ01 − ϕ02,
u0 = u01 − u02, f = f1 − f2 and ua = ua1 − ua2.

4 Fréchet differentiability

Before investigating the Fréchet differentiability of
the function F : (ϕ0, u0, ua, f) −→ u = (ϕ, u),
which maps the source term (ϕ0, u0, ua, f) ∈ (H1)2 ×
L∞a (Q) × L2(Q) of system (4) to the corresponding
solution (ϕ, u) ∈ W1

2 × W1
2 , we study the following
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problem: to find (ψ,w) such that

(PI)



∂ψ

∂t
− ν∆ψ = G1(x, t, ϕ)ψ

+(w − wa)F2(x, t, ϕ) +WaG2(x, t, ϕ)ψ in Q,

∂w

∂t
+ α

∂ψ

∂t
− µ∆ψ = g in Q,

∂ψ

∂n
=
∂w

∂n
= 0 in Σ,

ψ(0) = ψ0, w(0) = w0 in Ω,

where Wa = u− ua + Va.

Theorem 4 Let assumption (H1) be fulfilled. If
(ϕ, u) ∈ (W1

2 )2 and Wa ∈ L∞(0, T, L6) then
(i) For any (ψ0, w0, wa, g) ∈ (H1)2×L∞a (Q)×L2(Q),
there exists a unique pair of functions (ψ,w) ∈ (W1

2 )2

solution of system (PI), such that
‖ ψ ‖2W1

2
+ ‖ w ‖2W1

2

≤ Ce(‖ ψ0 ‖2H1 + ‖ w0 ‖2H1 + ‖ wa ‖2L2(Q) + ‖ g ‖2L2(Q)).
(ii) Let (ψ0i, w0i, wai, gi), i = 1, 2 be two couples of
(H1)2×L∞a (Q)×L2(Q). If (ψi, wi) is the solution of
(PI), with the data (ψ0i, w0i, wai, gi), i = 1, 2, then
‖ ψ ‖2W1

2
+ ‖ w ‖2W1

2

≤ Ce(‖ ψ0 ‖2H1 + ‖ w0 ‖2H1 + ‖ wa ‖2L2(Q) + ‖ g ‖2L2(Q)),
where ψ = ψ1 − ψ2, w = w1 − w2, ψ0 = ψ01 − ψ02,
w0 = w01 − w02, wa = wa1 − wa2 and g = g1 − g2.

Proof. The proofs of existence, uniqueness and the
results of the linear system (PI) are similar to those
of theorem 3, therefore we omit the details.

We are now going to study the Fréchet differen-
tiability of F . For simplicity, we denote the space
(H1(Ω))2 × L∞a (Q)× L2(Q) by UF .

Theorem 5 Let Xd = (ϕ0, u0, ua, f) ∈ UF , and
H = (hϕ, hu, ha, hf ) ∈ UF with F(Xd) and F(Xd+H)
being the corresponding solutions of (4). Then

‖F(Xd +H)−F(Xd)−F ′(Xd)H‖W1
2×W1

2

≤ C ‖ H ‖3/2
UF
, (6)

where F ′(Xd) : UF → W1
2 × W1

2 is a linear opera-
tor defined in the following way: for any H the pair
(ψ,w) = F ′(Xd)H is the solution of

(PF )



∂ψ

∂t
− ν∆ψ = G1(x, t, ϕ)ψ + (w − ha)F2(x, t, ϕ)

+WaG2(x, t, ϕ)ψ in Q,

∂w

∂t
+ α

∂ψ

∂t
− µ∆ψ = hf in Q,

∂ψ

∂n
=
∂w

∂n
= 0 in Σ,

ψ(0) = hϕ, w(0) = hu in Ω,

where Wa = u− ua − Va.

The proof will be detailed in [3].

5 An optimal control problem

We suppose now that X = (ϕ0, u0, ua, f) = (X1, X2)
(where X1 = (ϕ0, u0) and X2 = (ua, f)) is decom-
posed into the control Z = (Zϕ, Zu) ∈ Vad (data
assimilation) and the control Y = (Ya, Yf ) ∈ Uad

where Vad = (L2(Ω))2 and Uad = L∞a (Q)×L2(Q) i.e.
Xt

2 = CY t and Xt
1 = BZt, where C = diag(Ca, Cf )

(resp. B = diag(Bϕ, Bu)) are bounded operators on
Uad to Uad (resp. to H1×H1). So the function (ϕ, u)
is related to the disturbance Z and control Y by the
system (see (4)):



∂ϕ

∂t
− ν∆ϕ = F1(x, t, ϕ) + (u− CaYa)F2(x, t, ϕ)

+Va(F2(x, t, ϕ)− F2(x, t, 0)) in Q,
∂u

∂t
+ α

∂ϕ

∂t
− µ∆u = CfYf in Q,

∂ϕ

∂n
=
∂u

∂n
= 0 in Σ,

ϕ(0) = BϕZϕ in Ω,

u(0) = BuZu in Ω.

(7)

In order to obtain the regularity given in theorem 3,
we make the following assumptions: (Y, Z) ∈ Uad×Vad

and Va ∈ L∞(0, T, L6).
Let P : (Y,Z) 7→ (ϕ, u) be the map: Uad × Vad →
W1

2 ×W1
2 defined by (7) and introduce the cost func-

tion defined by

J(Y,Z) =
a

2
‖ ϕ−ϕobs ‖2L2(Q) +

b

2
‖ u−uobs ‖2L2(Q)

+
γ

2
‖ Y ‖2Uad

+
δ

2
‖ Z ‖2Vad

, (8)

where a, b, γ, δ are fixed such that γ, δ ≥ 0 with
γ + δ > 0 and a, b ≥ 0 with a + b > 0. The func-
tions uobs ∈ L2(Q) and ϕobs ∈ L2(Q) are given and
represent the observations.
Let K = K1 × K2 such that K1 and K2 are (given)
nonempty, closed, convex subsets of Uad × Vad. The
proposed problem consists in finding an optimal pair
(Y ∗, Z∗) ∈ K such that

J(Y ∗, Z∗) = inf
(Y,Z)∈K

J(Y, Z). (9)

Theorem 6 Let assumption (H1) be fulfilled.
Then there exists an optimal control (Y ∗, Z∗) ∈ K,
such that (Y ∗, Z∗) is defined by (9) and (ϕ∗, u∗) =
P(Y ∗, Z∗) is solution of (7).

2005 WSEAS Int. Conf. on DYNAMICAL SYSTEMS and CONTROL, Venice, Italy, November 2-4, 2005 (pp1-6)



Proof: Let (Yk, Zk) and (ϕk, uk) = P(Yk, Zk),
be a minimizing sequence i.e. lim inf

k
J(Yk, Zk) =

min
(Y,Z)∈K

J(Y, Z). Then (Yk, Zk) is uniformly bounded

in K and (CYk,BZk) is uniformly bounded in L∞(Q)×
L2(Q) × H1 × H1 (see definition of operators B and
C). In view of theorem 3, we can deduce that the
sequence (ϕk, uk) is uniformly bounded in W1

2 ×W1
2 .

Therefore we can extract from (Yk, Zk, ϕk, uk) a subse-
quence also denoted by (Yk, Zk, ϕk, uk) and such that

(Yk, Zk) ⇀ (Y ∗, Z∗) weakly in Uad × Vad,

(ϕk, uk) ⇀ (ϕ̃, ũ) weakly in (W2)2,

(ϕk, uk) → (ϕ̃, ũ) strongly in (L2(Q))2.

It is easy to prove that (ϕ̃, ũ) = P(Y ∗, Z∗) and
thanks to uniqueness of the solution of (7), we have
(ϕ̃, ũ) = (ϕ∗, u∗). Then, using lower semicontinuity
of the cost functional J , we can deduce J(Y, Z) ≤
lim inf

k
J(Yk, Zk). Thus (Y ∗, Z∗) is a minimizer of J .

Proposition 1 The function P is continuously
Fréchet differentiable. The derivative operator
P ′(Y, Z) is defined in the following way, if we set
P ′(Y, Z) : H = (H,K) 7→ w = (ψ,w), where H =
(ha, hf ) and K = (kϕ, ku),then the pair w = (ψ,w) is
solution of the linear system:

(PLP )



∂ψ

∂t
− ν∆ψ = G1(x, t, ϕ)ψ +WaG2(x, t, ϕ)ψ

+(w − Caha)F2(x, t, ϕ) in Q,
∂w

∂t
+ α

∂ψ

∂t
− µ∆ψ = Cfhf in Q,

∂ψ

∂n
=
∂w

∂n
= 0 in Σ,

ψ(0) = Bϕkϕ in Ω,

w(0) = Buku in Ω,

where Wa = u − ua − Va. Futhermore, for all
(Y, Z) ∈ Uad × Vad, there exists a constant Ce such
that

‖ P ′(Y, Z) ‖L(Uad×Vad,W1
2×W1

2 )≤ Ce.

Proof. The proof of this proposition is a consequence
of the nature of the operators B, C and of the results
of theorem 5.

In order to obtain the necessary optimality condi-
tions which have to be satisfied by the solution of the
optimal control problem, we introduce the following
adjoint system:

−∂p
∂t
− α∂q

∂t
− ν∆p−G1(x, t, ϕ)p

−WaG2(x, t, ϕ)p = a(ϕ− ϕobs) in Q,

−∂q
∂t
− µ∆q − F2(x, t, ϕ)p = b(u− uobs) in Q,

∂p

∂n
=
∂q

∂n
= 0 in Σ,

p(T ) = q(T ) = 0 in Ω,

(10)

where (ϕ, u) = P(Y, Z) and Wa = u− ua − Va.

Remark 6 The adjoint system (10) is a linear sys-
tem, then it is quite easy to prove that (p, q) exists
and is unique in the same manner as in theorem 4.

We can now give the first-order optimality conditions
for the optimal control problem (9).

Theorem 7 Let assumption (H1) be satisfied,
(Y ∗, Z∗) ∈ K be an optimal control of (9) and
(u∗, ϕ∗) ∈ W1

2 ×W1
2 such that (Y ∗, Z∗) is defined by

(9) and (u∗, ϕ∗) = P(Y ∗, Z∗) solution of (7). Then,
for all (Y, Z) ∈ K we have∫ T

0

∫
Ω

(L∗(p∗, ϕ∗, q∗) + γY ∗)(Y ∗ − Y )dxdt ≥ 0

and ∫
Ω

(M∗(p∗, ϕ∗, q∗)− δZ∗)(Z∗ − Z)dx ≥ 0,

where (p∗, q∗) is the solution of the adjoint sys-
tem (10) corresponding to (ϕ∗, u∗), L∗(p∗, ϕ∗, q∗) =
(−C∗ap∗F2(., ., ϕ∗), C∗f q

∗) and M∗(p∗, ϕ∗, q∗) =
(B∗ϕ(p∗(0) + αq∗(0)), B∗uq

∗(0)).

Proof. The cost function J is a composition of dif-
ferentiable maps then J is differentiable and we have,
for all H = (H,K) ∈ K,

J ′(Y,Z).H =
∫∫

Q
(a(ϕ−ϕobs)ψ+b(u−uobs)w)dxdt

+ γ < Y,H >Uad
+δ < Z,K >Vad

,

where (ψ,w) = P ′(Y, Z).H solution of system (PLP ).
Multiplying the first part of (PLP ) by p and the

second part by q, using Green’s formula and integrat-
ing by time we obtain (owing to the homogeneous Neu-
mann boundary conditions)∫∫

Q

(
−∂p
∂t
− ν∆p−G1(., t, ϕ)p−WaG2(., t, ϕ)p

)
ψdxdt

=

∫∫
Q
F2(., t, ϕ)pwdxdt−

∫∫
Q
F2(., t, ϕ)p Cahadxdt

−
∫

Ω

p(T )ψ(T )dx+

∫
Ω

p(0)ψ(0)dx,∫∫
Q

(−∂q
∂t
− µ∆q)wdxdt =

∫∫
Q
α
∂q

∂t
ψdxdt

−
∫

Ω

q(T )(αψ(T ) + w(T ))dx

+

∫
Ω

q(0)(αψ(0) + w(0))dx+

∫∫
Q
qCfhfdxdt,

ψ(0) = Bϕkϕ, w(0) = Buku.
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Since (p, q) is solution of (10), we have

a

∫∫
Q

(ϕ− ϕobs)ψdxdt =

∫∫
Q
F2(., t, ϕ)pwdxdt

−
∫∫

Q
F2(., t, ϕ)p Cahadxdt

+

∫
Ω

p(0)Bϕkϕdx−
∫∫

Q
α
∂q

∂t
ψdxdt,

b

∫∫
Q

(u− uobs)wdxdt+

∫∫
Q
F2(., t, ϕ)pwdxdt

=

∫∫
Q
α
∂q

∂t
ψdxdt+

∫∫
Q
qCfhfdxdt

+ α

∫
Ω

q(0)Bϕkϕdx+

∫
Ω

q(0)Bukudx,

hence

b

∫∫
Q

(u− uobs)wdxdt+ a

∫∫
Q

(ϕ− ϕobs)ψdxdt

= −
∫∫

Q
F2(., t, ϕ)pCahadxdt+

∫∫
Q
qCfhfdxdt

+

∫
Ω

p(0)Bϕkϕdx+ α

∫
Ω

q(0)Bϕkϕdx+

∫
Ω

q(0)Bukudx.

From the expression of J ′(Y,Z).H we can deduce that

J ′(Y,Z).H =

∫∫
Q

(L∗(p, ϕ, q) + γY )Hdx

+

∫
Ω

(M∗(p, ϕ, q)− δZ)Kdxdt,

where,

L∗(p, ϕ, q) = (−C∗
apF2(., ., ϕ), C∗

f q)

and

M∗(p, ϕ, q) = (B∗
ϕ(p(0) + αq(0)), B∗

uq(0)).

Since (Y ∗, Z∗) is an optimal solution we have, for all
(Y, Z) ∈ K,

∂J

∂Y
(Y ∗, Z∗).(Y ∗−Y ) ≥ 0 and

∂J

∂Z
(Y ∗, Z∗).(Z∗−Z) ≥ 0,

hence, for all (Y, Z) ∈ K we finally get∫∫
Q

(L∗(p∗, ϕ∗, q∗) + γY ∗)(Y ∗ − Y )dxdt ≥ 0,∫
Ω

(M∗(p∗, ϕ∗, q∗)− δZ∗)(Z∗ − Z)dx ≥ 0.
(11)

This completes the proof.

6 Conclusion

This paper is an attempt to set an optimal con-
trol approach for a class of problems related to non-
isothermal solidification of metals. Other choices of
control variables and disturbances can be envisaged.

Numerical aspects will be presented in a forthcoming
paper. It is clear that the amount of computation is
crucial in solution of control problems (for an existing
approach based on POD we refer to [15]). This re-
mark also applies to a game problem associated with
the worst case control of this model as it will be shown
in a forthcoming paper [3].
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