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Abstract: - Topography reconstruction by interferometric synthetic aperture radar (InSAR) refers to a method used to 
determine target's three- dimensional (3D) position. This position is obtained by principal measurements and the 
imaging geometry of system. By coherently combining signals from the conventional and additional SAR antennas, the 
interferometric phase difference between the received signals can be formed for each imaged point. In this scenario, the 
phase difference is essentially related to the geometric path length difference to the image point, which depends on the 
topography. The range equation, the Doppler equation and the interferometric phase equation of InSAR provide the 
relation between the fundamental measurements and the point’s position on topography.  So the point’s position may 
be obtained by solving three interferometric equations. The InSAR equations contain the unknown point’s position in a 
highly nonlinear manner and are difficult to be solved directly. For this problem, researchers have resorted to the 
orthogonal decomposition of the look vector of radar and have derived several reconstruction algorithms.  
     In this paper, we analyze the topography reconstruction algorithm based on Madsen's orthogonal decomposition 
(MOD). We show that the plane wave model has been introduced in the derivation of this algorithm which causes a 
significant reconstruction error especially for airborne case.  
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1   Introduction 
Interferometric radar has been proposed and successfully 
demonstrated as a topographic mapping technique by 
Graham [1], Zebker and Goldstein [2], and Gabriel and 
Goldstein [3]. A radar interferometer is formed by 
relating the signals from two spatially separated 
antennas; the separation of the two antennas is called the 
baseline. The spatial extent of the baseline is one of the 
major performance drivers in an interferometric radar 
system: if the baseline is too short the sensitivity to 
signal phase differences will be so small to be 
undetectable, while if the baseline is too long additional 
noise due to spatial decorrelation corrupts the signal. 
     Two distinct implementation approaches have been 
developed for topographic radar interferometers; they 
differ in how the interferometric baseline is formed. In 
the first case the baseline is formed by two physical 
antennas which illuminate a given area on the ground 
simultaneously: this is the usual approach for aircraft 
implementations where the physical mounting structures 
may be spaced for sufficient baseline. This approach is 
used by [2] for the NASA CV-990 radar, and is also 
used in the TOPSAR topographic mapping radar 

mounted on the NASA DC-8 aircraft [4]. The second 
type of implementation utilizes a single satellite antenna 
in a nearly-exact repeating orbit. Then it forms an 
interferometer baseline by relating radar signals on the 
repeat passes over the same site. Topographic maps 
using this technique have been demonstrated by 
Goldstein et al [2] and Gabriel et al [3], [5].           
     Although, interferometric topographic mapping is 
possible using each approach, a significant advantage 
accrues from using the single-pass aircraft 
implementation over the repeat-orbit spacecraft method. 
Specifically in the first approach, we avoid problems 
associated with temporal decorrelation of the surface, 
that is, the result that changes on the wavelength scale of 
the surface lead to additional decorrelation noise in the 
interferogram. If the change on the surface is large, as 
could happen if, precipitation occurred, the phases of the 
received signals may be wholly unrelated. On the other 
hand, spaceborne platforms provide views of 
inaccessible regions of the Earth.  
     The Across-track interferometric technique exploits 
the phase differences of at least two complex-valued 
SAR images acquired from slightly different positions 

2005 WSEAS Int. Conf. on REMOTE SENSING, Venice, Italy, November 2-4, 2005 (pp89-94)



and/or at different times to extract height information of 
topography. It can measure the slant range difference at 
the order of sub-wavelength, thus it has the ability to 
extract accurately topography height information        
[6]-[8]. The airborne InSAR imaging geometry is 
depicted in Fig.1.  

 
Fig.1 Airborne InSAR imaging geometry. 

The coordinate system denoted by $ $ $XYZ  is the ECR 
(Earth Centered Rotating) coordinate system with the 
origin located at the earth's gravitational center, with $Y  
parallel to the nominal track , the slant range vector 
from antenna  to target 

Ai

Ai P  is given by rr , where the 
subscript i  refers to the antenna number or track number. 
The angle 

i

θ , β  respectively represents the look angle 
and squint angle of antenna . The target location 
vector is given by vector 

A1r
P , the baseline vector is 

defined as 
r r r
b A .  A= −2 1

     The slant range , the Doppler frequency ri f D  and the 
interferometric phase ϕ  are fundamental measurements 
of InSAR, the relation among them can be described by 
three basic interferometric equations : the equation  of 
range sphere, the Doppler equation and the phase 
equation [9]. These equations are respectively given by: 
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where Q  for the standard mode InSAR system, Q= 1 = 2  
for  the ping-pong mode and  is the unit vector  in the 
line-of-sight direction of  . 

$ri
rri

     Topography reconstruction by InSAR refers to 
determine target's 3D location using principal 
measurements and the imaging geometry of system; it 
may be achieved by solving the equation set (1)-(3). 

However, the equation set is difficult to be solved 
directly, that due to its highly nonlinear characteristics. 
To solve this problem, several reconstruction algorithms 
have been proposed and they are generally divided into 
two classes: numerical algorithms [10] and analytical 
algorithms [11]-[12]. In numerical algorithms, the 
linearization of the nonlinear equation set may be 
achieved by Taylor expanding InSAR equations (1)-(3) 
to the first order and a linear equations system is 
obtained. Then the unknown position coordinates may 
be easily achieved by solving the new equation set. The 
main drawback of numerical algorithms is their 
inaccuracy due to using only the constant and the linear 
term of Taylor series. However, analytical algorithms 
may give more accurate solution than numerical ones 
because they determine the position coordinates by 
solving the equation set formed by (1)-(3) without 
introducing any approximation. In analytical algorithms, 
two research trends are resorted to solve the highly 
nonlinear equation set. Thus, analytical algorithms fall 
into two classes: the direct analytical method [11] and 
the look vector's orthogonal decomposition method [13]. 
In this paper, we will focus on the study of topography 
reconstruction based on the look vector's orthogonal 
decomposition. 

According to (1), the target location can be expressed 
as  r r r r
P A r A r r= + = +1 1 1 1. $1                                                    (4) 
where the antenna vector 

r
A1  may be provided by 

navigation equipments and the slant range r  may be 
determined according to the principle of radar ranging. 
Therefore, the determination of the target location is 
reduced to the determination of the unit vector. Then, 
look vector's orthogonal decomposition method is 
introduced just from this idea. The look vector is 
projected onto an orthogonal basis that is defined as 
local antenna coordinate system, and then transformed 
into the general coordinate system. Thus, substituting the 
unit vector in the general coordinate system into (4) may 
achieve topography reconstruction. 

1

     According to the idea of the orthogonal 
decomposition, Madsen has introduced a local 
coordinate system defined on the aircraft and has given a 
method for the orthogonal decomposition of the look 
vector [13]. However, the look vectors for the two 
acquisitions have been assumed to be parallel, and thus 
the range difference approximately equals to the 
projection of the baseline vector on the look direction. 
That is to say, a plane wave model of the 
electromagnetic wave front has been introduced. The 
simplified model may be valid only for spaceborne 
InSAR geometries with small swaths and small ratios of 
the baseline to the slant range [14]. However, the 
airborne InSAR has a relatively larger baseline-range 
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ratio than the spaceborne one. Thus, the plane wave 
model will introduce a significant height reconstruction 
error. 

 
 

2   Plane wave model   
According to (3), the interferometric phase of InSAR is 
proportional to the range difference and may be 
expressed by the baseline vector and range vector as [9] 
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if b , the following relation can be obtained only by  
using the constant and linear term of  Taylor series  

r<< 1
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where 

                                                            

ϕ pw   is the plane wave model of the 
interferometric phase [2], [9], [13], [15]-[16]. 
     As discussed above, the target position is determined 
by the intersection of three surfaces described by        
(1)-(3) [9]. Fig.2 depicts the range sphere, the Doppler 
cone and the phase cone relevant to antenna  . The 
range sphere is centered at antenna  and has a radius 
equal to slant range r .  The Doppler cone has a 
generating axis along the velocity vector and the cone 
angle is proportional to the Doppler frequency. From (5), 
the phase surface is a hyperboloid with focuses located 
at  and a symmetrical axis along the baseline vector. 
Thus, the target position is given by the intersection 
locus by the three surfaces. Under the plane wave model, 
the interferometric phase hyperboloid reduces to a phase 
cone, and the target position is determined by the 
intersection locus of range sphere, the Doppler cone and 
the phase cone, illustrated by 

A1

A1

1

Ai

P  in Fig.2. According to 
this interpretation, the plane wave model may introduce 
an unavoidable reconstruction error. 

We note that a conventional SAR system resolves 
targets in the range direction by measuring the time it 
takes a radar pulse to propagate to the target and return 
to radar. The along-tack location is determined from the 
Doppler frequency shift that results wherever the relative 
velocity between the radar and target is not zero. A 
target in the radar image could be located anywhere on 
the intersection locus, which is a circle in the plane 
formed by the radar line of sight to the target and vector 
pointing from the aircraft to nadir.  

 
 

Fig.2 Geometric interpretation of topography   
            3D reconstruction by InSAR. 

  
     Physically, the so called plane wave model is that 
when b r<< 1 is valid. The signals scattered by the same 
point P  on the surface of topography arrive at the 
antennas in a parallel manner, thus, the wave front may 
be approximated as a plane. So, the range difference 
from antennas to point P  approximately equals the 
projection of the baseline vector onto the look direction, 
where Δr A C r b= =< >1 1$ ,

r
 as illustrated in Fig.3. 

However, the wave front is actually spherical, the range 
difference is A B1 . Thus, an interferometric phase 
analytic error will be unavoidably introduced. From (5) 
and (6), this error can be expressed as 
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 Fig.3 The plane wave model. 
 

As illustrated in Fig.4, for height measurement by 
InSAR, the universal geometry may be the two-
dimensional (2D) InSAR geometry, under which the 
baseline component lies in the plane of the look vector 
and the nadir direction, normal to the flight direction. 
According to this geometry, we have  

( αθ −>=< sinˆ,1̂ br )                                                    (9) 
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where α  is the angle the baseline makes with respect to 
a reference horizontal plane. From (8), we obtain the 
height reconstruction error introduced by the plane wave 
model  
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In 3D InSAR imaging geometry, the baseline comprises 
a component along track and component across track. 
These two components correspond to two different types 
of applications: the differential interferometry and the 
topography measurement. On this decomposition basis, 
Madsen has introduced an orthogonal decomposition 
that defines a local coordinate system. The MMC 
(Madsen Moving Coordinate) system  is illustrated 
in Fig.5, with 

 
 
 
 
 
 
 
 
 
 
 
 
 

   Fig.4 2D InSAR geometry. 
 

     As mentioned above, the plane wave model was 
originally applied to the spaceborne InSAR system with 
a small swath [17]. The model allows simplified 
estimation of the baseline based on tie points (points of 
known elevation on the ground) distributed in range and 
in azimuth if there is divergence of the baseline. 
However, one should be aware that significant 
systematic reconstruction errors are introduced. The 
plane wave model is inaccurate for satellite geometries 
with large swaths, and will introduce a systematic height 
reconstruction error. For cases with parallel tracks, the 
ERS results show that the plane wave model causes 
systematic height errors on the order of 10’s of meter. 
Moreover, under 2D InSAR, the systematic errors 
increase in cases with larger track divergences. Although 
these errors may be mitigated through tie point baseline 
tweaking [14], [18], they can't be eliminated completely. 
Therefore, the model must be carefully treated to get an 
accurate topography reconstruction by spaceborne 
InSAR. 

For airborne InSAR geometries, the phase error and 
the height reconstruction error introduced by the plane 
wave model are approximately of the same order as the 
accuracies of the phase measurement and the height 
reconstruction by InSAR [19]. On the other hand, even 
for the airborne InSAR with dual antennas constructed 
on the rigid platform, the attitude of the aircraft may be 
dynamic changed. So, track divergences also exist in 
airborne InSAR as that in spaceborne InSAR, which in 
turn increases the height reconstruction error introduced 
by the plane wave model.  

 
 

3   Madsen's orthogonal decomposition 
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Fig.5 MMC and ECR systems 

 
Then, the unit look vector  may be expressed by the 

orthogonal basis as  
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Under the plane wave model, the interferometric phase 
now reads [9] 
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Substituting (2) and (13) into (12) derives the unit vector 
in the local system  
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4   Topography reconstruction algorithm 
The transformation from the local coordinate system to 
the general one can be achieved by equation (15) 
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Theoretically, after transformation by (15), we have 
fulfilled the transformation. However, in airborne 
InSAR, the variation of aircraft attitude (depicted by 
yaw, pitch and roll) causes the unit look vector in the 
general coordinates to be transformed into a new 
coordinate. Thus, in order to achieve the topography 3D 
reconstruction, the unit look vector must be transformed 
back into the general coordinate system from the new 
one again. The transformation can be fulfilled by Euler 
rotation matrices corresponding to three attitude angles. 
The above transformation yields the unit look vector in 
the general coordinate system including the attitude of 
the aircraft. 
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where Y P R, ,  are Euler rotation matrices and θ θ θr p, , y

)

 
are the attitude angles respectively for  roll, pitch and 
yaw. 
 Finally, we calculate the  coordinates of the 
targets by using (14) - (17) with (12) and (4). 

( zyx ,,

 
 
5   Conclusion 
In this paper, the topography reconstruction algorithm 
based on Madsen's orthogonal decomposition has 
analyzed. Madsen has given an orthogonal 
decomposition of the look vector under the plane wave 
model of the electromagnetic wave front. However, 
InSAR systems require extremely accurate knowledge of 
the baseline length and orientation angle-millimeter or 
better knowledge for the baseline length and 10's of arc 
second for the baseline orientation angle. These 
requirements necessitate an extremely rigid and 
controlled baseline, a precise baseline metrology system 
and rigorous calibration procedures. 

Also, we note that the phase accuracy requirements 

for interferometric systems typically range from       
0.1°-10°. This imposes rather strict monitoring of phase 
changes, which are not related to the imaging geometry 
in order to produce accurate topographic maps.  

From our analysis, we may finally conclude that the 
plane wave model introduce a significant reconstruction 
error especially for the airborne InSAR, and must be 
discarded to accurately reconstruct the topography.  
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