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Abstract: A shape-adaptive search is defined based on the BISK scheme and it is applied to sign encoding and
magnitude refinement of images. It can be generalized to a complete bitplane encoder whose performance is
comparable to that of other state-of-the-art encoders.
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1 Introduction
In relation to Remote Sensing (RS) and Geographic
Information Systems (GIS) applications, multispectral
and hyperspectral images have been successfully used
for, among many others, image classification and seg-
mentation. Nevertheless, inherent to these images is
their huge size, so that it seems reasonable to look for
a compression approach both for storage and transmis-
sion scenarios.

This work is focused on the sign encoding and
magnitude refinement of wavelet-based bit plane en-
coders. Some competitive techniques, e.g. SPIHT [9]
or SPECK [6], have no specific method to encode
the sign of recently found significant coefficients nor
the magnitude refinement bits; other encoders, e.g.
JPEG2000 [11], EZBC [3], use an adaptive contextual
arithmetic coder. From another perspective, [1] propose
an alternative method that uses the wavelet transform
properties to encode the transformed coefficients sign.
Here we propose to adapt the notion of shape-adaptive
coding [2] to define new methods to encode both the
sign and the refinement bits of the coefficients.

The aim of shape-adaptive coding is to compress
an image with a non-regular boundary assuming that
both the encoder and the decoder know this boundary.
Usually the image is located within a larger rectangu-
lar frame; pixels belonging to the image are named
opaque pixels, pixels inside the frame but not belong-
ing to the image are named transparent pixels. Some
of the bitplane encoders used for shape-adaptive co-
ding consist of well known regular-shape bitplane en-
coders, but treating only those bits corresponding to
the opaque zone. This is the case of OB-SPIHT and
OB-SPECK [4, 5, 7]. On the other hand, BISK [2, 8]
is a method based on SPECK, with the novelty that
it alternates set partitioning with opaque zone shrink-
ing. This shrinking step consists of reducing each par-
titioned subset to the minimum rectangular set contain-
ing all its opaque coefficients.

The approach we present here consists of encod-
ing the sign bits and the refinement bits as if they were
the coefficients of an irregular-shape image. For the
case of sign encoding, from a whole image we consider
opaques those coefficients that have been found signif-
icant in the last significance pass; then we encode the
sign inside this opaque zone by using a BISK-based
search. Similarly, to encode the refinement bits in a
given bitplane, we split all the previously found signif-
icant coefficients in various opaque zones: two coef-
ficients are placed in the same opaque zone if all the
first bits of their binary representation (up to the bit-
plane previous to the one currently being encoded) are
the same; then, for each of these opaque zones we en-
code the refinement bits using the BISK-based search
again.

Although the proposed methods for encoding the
sign and the magnitude refinement bits may be con-
sidered independently and may be integrated to other
bitplane encoders, the search scheme suggests a new
complete wavelet transform-based bitplane encoder de-
fined by a Repeated BISK-based search (REBISK). We
will see that for some experiments, REBISK may give
similar or even better results than other state-of-the-art
encoders.

2 Two-valued Shape-Adaptive Search
The framework for the two-valued shape-adaptive
search problem (TVSAS) is an irregular-boundary
image with only two possible values (1/0 or +/−)
where the boundary is known by both the coder and
the decoder. The aim is to define a coding method that
determines the value of each point in the image. This
is the case of determining the sign of recently found
significant bits, or also the case of determining the re-
finement bits at a given bitplane.

We say classical search (CS) when referring to the
method that scans the whole image in a predefined or-
der and just sends the value of each point. On the other
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hand, we consider a BISK-based search (BBS). Sup-
pose that the two possible values are a and b, and that
positions with value a are to be determined.

We use a First-In-First-Out (FIFO) structure whose
nodes are image blocks. This FIFO structure of blocks,
named BF, may be either initialized to an empty FIFO,
or to a FIFO containing somehow selected blocks. The
blocks in BF have to be evaluated and, if needed, par-
titioned. After the partitioning, each of the resulting
parts containing at least one a is appended back to the
BF. An empty block is inserted after the initial selected
blocks to distinguish these blocks, which must be tested
for significance, from those appended after partitioning
a block. Now, following the BISK scheme which alter-
nates the SPECK block partitioning with the shrinking
step, we can define the BBS procedure written down in
Figure 1.

Notice that for the BBS, each block can be parti-
tioned into 1, 2, 3 or 4 blocks, while for the original
BISK, each block is partitioned into 1 or 2 blocks. The
elements in each set of 1, 2, 3 or 4 bits denoting the
significance of the corresponding blocks are encoded
together to save bits using an ad hoc mapping.

3 TVSAS Applied to Encoding of Coeffi-
cients

3.1 Magnitude Encoding

3.1.1 E-Sets and E-TVSAS
Consider a wavelet transformed image as a set I of co-
efficients. Let min, med and max be three values with
min ≤ med ≤ max. Define the following subsets of I:

E–opaques(min, med, max)= {x ∈ I | min ≤ |x| <

max}.

E–significants(min, med, max)= {x ∈ I | med ≤ |x| <

max}.

E–insignificants(min, med, max)= {x ∈ I | min ≤ |x| <
med}.

Denote E–TVSAS(min, med, max) a TVSAS
method that classifies E–significants and E–
insignificants from the irregularly bounded set E–
opaques. As examples of E–TVSAS methods, we con-
sider:

E–CS: For each element in E–opaques, emit a 1 if it is
in E–significants or a 0 otherwise.

E–SBBS: Determine the elements in E–significants
among the ones in E–opaques by using the BISK-
based search.

E–IBBS: Determine the elements in E–insignificants
among the ones in E–opaques by using the BISK-
based search.

E–comb: Shortest chain in { 0|E–CS, 10|E–SBBS,

11|E–IBBS }.

Following the same ideas, one can define the sets
E+-opaques, E+–significants, and E+–insignificants
(respectively E−–opaques, E−–significants, and E−–
insignificants) containing the positive (respectively
negative) values of the analogous E–sets. Then E+–
TVSAS and E−–TVSAS methods can be defined as for
E–sets.

3.1.2 Significance Pass
Let MAX be the maximum absolute value among
the coefficients in I and threshold T = 2blog2(MAX)c.
The following procedures are consecutive significance
passes: E–TVSAS(0,T,2T), E–TVSAS(0,T/2,T), E–
TVSAS(0,T/4,T/2),. . .

Notice that if E–SBBS is used as the E–TVSAS
method, and at each step the structure BF is initialized
with the insignificant blocks from the previous bitplane,
these significance passes are approximately the signif-
icance passes of SPECK. The unique difference is that
SPECK uses its I sets while here we only consider rect-
angular sets.

3.1.3 Refinement Passes
An E–TVSAS(T, 3T/2, 2T) procedure after the sec-
ond significance pass, namely E–TVSAS(0, T/2, T),
gives the first magnitude refinement pass. Similarly,
the three procedures E–TVSAS(T/2, 3T/4, T), E–
TVSAS(T, 5T/4, 3T/2) and E–TVSAS(3T/2, 7T/4, 2T)
after the third significance pass E–TVSAS(0, T/4, T/2)
give the second magnitude refinement pass, and so on.
Thus, the following algorithm yields a coding method
for the absolute values in I.

for t from T to 1 by halving
for min from 0 to 2T-2t by 2t

E-TVSAS(min, min+t, min+2t);

Figure 2 shows the E–sets used for the significance pass
and for the refinement passes.

3.2 Sign Encoding
As before, let min and max be two values with min ≤
max and define the subset S–opaques(min,max)={x ∈
I | min ≤ |x| < max}. We also denote S–
TVSAS(min,max) a TVSAS method that classifies
the positive and negative values in the (irregularly
bounded) set S–opaques(min,max). As S–TVSAS
methods, we consider:

S–CS: For each element in S–opaques, emit a 1 if it is
positive or a 0 otherwise.

S–PBBS: Determine the positive values in S–opaques
by using the BISK-based search.

S–NBBS: Determine the negative values in S–opaques
by using the BISK-based search.
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S–comb: Shortest chain in {0|S–CS,10|S–PBBS,

11|S–NBBS}.

3.3 Image Coding
Now, the following algorithm yields a complete quality
progressive image coding method.

for t from T to 1 by halving
E-TVSAS(0, t, 2t);
S-TVSAS(t, 2t);
for min from 2t to 2T-2t by 2t
E-TVSAS(min, min+t, min+2t);

The complete encoding algorithm that uses E+/E−–
comb and S–comb as the E–TVSAS and S–TVSAS
methods is named REBISK because of the Repeated E–
BISK-based search.

4 Experimental Results
The lossy compression performance of REBISK is here
compared to other coding systems for some images of
the Landsat Corpus.

SPIHT, SPECK and REBISK results are produced
with our frameworks. The three techniques are im-
plemented in JAVA and do not use arithmetic coding.
JPEG2000 results are produced with Kakadu [10], ver-
sion v4.4. Kakadu is employed with the commonly
lossy options {Clevels=6 Creversible=no -precise}.
For all coding techniques, six levels of the 9/7 DWT
are applied.

Evaluation of the different coding techniques is per-
formed based on the trade-off between the compres-
sion ratio, given in bits per pixel (bpp), and the qual-
ity, given by the Peak Signal to Noise Ratio (PSNR),
which is a measure accounting for the similarity be-
tween the original image I and the recovered image
I∗, given in dB; for images with a B bpp bit depth,
PSNR = 10 log10

(2B−1)2

MSE , where the Mean Square Error

(MSE) is given by MSE = 1
Nx

1
Ny

∑Nx
i ∑Ny

j (Ii j − I∗i j)
2.

4.1 Landsat Image
The Landsat Program is a joint effort of the U.S. Ge-
ological Survey (USGS) and the National Aeronautics
and Space Administration (NASA) to gather Earth re-
source data using a series of satellites. NASA was re-
sponsible for developing and launching the spacecrafts.
The USGS is responsible for flight operations, mainte-
nance, and management of all ground data reception,
processing, archiving, product generation, and distribu-
tion. A primary objective of the Landsat Program is
to ensure a collection of consistently calibrated Earth
imagery. The Landsat Project is the longest-running
enterprise for acquisition of moderate resolution im-
agery of the Earth from space. The Landsat 1 satel-
lite was launched in 1972; the most recent, Landsat 7,
was launched in 1999. The instruments on the Landsat
satellites have acquired millions of images.

The chosen images taken for the experiments corre-
spond to a Landsat 7 flight on 19 May 2002. The sen-
sor producing these images is an Enhanced Thematic
Mapper Plus (ETM+). The ETM+ instrument provides
image data from eight spectral bands. The spatial res-
olution is 30 meters for the visible (band 1: blue; band
2: green; band 3: red), for the near-infrared (band 4),
and for the mid-infrared (bands 5 and 7); resolution for
the thermal infrared (bands 6 and 9) is 60 meters. The
sensor also allows a panchromatic band (band 8) with
15 meters resolution. The satellite orbits at an altitude
of 705 km and provides a 16-day, 233-orbit cycle.

The original images belong to path 197 and row 31.
They are 11292 columns times 13350 rows of spatial
size, but they have been cut off to 4096 times 4096 pixel
scenes, with 8 bits per pixel resolution. Images have
been ortocorrected and an atmospheric correction has
also taken place. Compression experiments have been
carried out on all eight spectral bands.

Fig. 3 shows the rate distortion curves obtained for
all three visible bands for bit rates running from 0.001
bpp (compression ratio 8000:1) to 1.5 bpp (compres-
sion ratio 5:1). Fig. 4 shows the rate distortion curves
obtained for all three infrared bands for the same bit
rates. Finally, Fig. 5 shows the rate distortion curves
obtained for the thermal bands for the same bit rates.
In these figures, the curve for SPECK is not plotted be-
cause its performance is equivalent to SPIHT.

5 Conclusions
In this paper we have introduced a new approach for en-
coding sign and refinement bits. Each refinement pass
and each sign encoding procedure is seen as a two-
valued shape-adaptive search. To proceed with each
search we defined BISK-based schemes which combine
the block partitioning of SPECK with the block shrink-
ing of BISK. In addition, the significance pass can be
treated also as a two-valued search and, in this way, the
whole bitplane encoder REBISK has been defined by a
repetition of the BISK-based scheme.

For all compression ratios, REBISK provides better
coding performance than other state-of-the-art coding
techniques as SPIHT and SPECK (see Fig 3, and Fig. 4
and Fig. 5). On the other hand, the comparison of the
results obtained with JPEG2000 and the results of RE-
BISK for the rate-distortion curves in Figs. 3, 4 and 5
shows that for all bit rates JPEG2000 achieves better re-
sults than REBISK although they are very close. Notice
that the JPEG2000 coding scheme implements arith-
metic codification in front of the no arithmetic coding
strategy followed for the REBISK algorithm.
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Figure 1: Functions used by the BISK-based search.

procedure BBS(BF)
{
if BF is empty then
for each wavelet transf subband S

SS=Shrink(S)
#i.e. SS is the
#minimal rectangle
#containing S

if SS is not empty
append SS to BF

append empty block to BF

S = extract first block of BF
while S is not empty do
if a in S

emit 1
Partition (S,BF)

else
emit 0

S = extract first element of BF

while BF is not empty do
S = extract first element of BF
Partition (S,BF)

}

procedure Partition(S,BF)
{
horizontal split S into S1 and S2:

S1: size floor(y(S)/2) by x(S)
#where
#y(S) is the n. of rows of S
#x(S) is the n. of columns of S

S2: size (y(S)-floor(y(S)/2)) by x(S)
Shrink(S1)
Shrink(S2)

if S1 is not empty then
vertical split S1 into s1 and s2:
s1: size y(S1) by floor(x(S1)/2)
s2: size y(S1) by (x(S1)-floor(y(S1)/2)

Shrink(s1)
Shrink(s2)

if S2 is not empty then
vertical split S2 into s3 and s4:
s3: size y(S2) by floor(x(S2)/2)
s4: size y(S2) by (x(S2)-floor(y(S2)/2)

Shrink(s3)
Shrink(s4)

for i from 1 to 4
if si is not empty
if a in si then
emit 1
if si is not a single coefficient

append si to BF
else
emit 0

}

Figure 2: E-sets for the significance pass (left column) and for the refinement pass (right column)
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Figure 3: Rate-distortion curves for 4096×4096 Landsat Image. Visible bands.
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Figure 4: Rate-distortion curves for 4096×4096 Landsat Image. Infrared bands.
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Figure 5: Rate-distortion curves for 4096×4096 Landsat Image. Thermal bands.
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