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MATRIX ANALYSIS OF ANCHORED STRUCTURES
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Abstract: - The purpose of this paper is to analyze a structure consisting of beam, bars and anchored cable, which
hold the transmission lines, when is subjected to a static loading. For this study we use the matrix displacement
method. Because the elastic cables are elements capable to resist only in axial tension forces, the numerical
algorithm will have two steps. In the first step we use the displacement method for the beams, bars and all cables.
In the second step, we repeat the calculus, after we remove the compressed cables.
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1 Introduction

The primary function of any structure is to
support and to transfer externally applied loads to
the reaction points while at the same time being
subjected to some specified constraints.

Using the concept of stiffness matrix, which has
been dealt with by J.S. Przemieniecky, [5], O.C.
Zienkiewicz,[6], Brebbia C.A.[1], the proposed
numerical procedure can be used to determine the
equilibrium configuration of any 3-dimensional
assembly with cable components. An analysis of the
suspension cables and the truss-systems was
presented in [2], [3].

The general assumptions used in this paper are:

- displacements of a structural element are not
very large and the geometry of the system is
well defined before the analysis is attempt;

- displacements and strains of the loaded
structure are small and hence, linear elasticity
theory applies.

The algorithm is presented for the assembly
shown in Fig. 3. The basic structure (nodes 1-9) is
clamped in the points 1 and 8 and is hinged in the
nodes 9-16. All members that lie between nodes 1-8,

are considered beams. The two stiffeners; 3-7 and 2-7
and the cables: 2-14, 2-13, 4-15, 4-16, 7-9, 7-10, 4-
11, 4-12 are pin-jointed bars.

2 Stiffness properties of elements

In the local coordinate system (Fig. 1), the
12x12 stiffness matrix for a beam element bounded
by the nodes N1, N2 is ks(A, 1,,1), where: A —the
cross-sectional area, |, — the axial moment of inertia
of the section about z axes and | — the length of the
beam. The form of this matrix is presented in [5].
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For a pin-jointed element, which is shown in
the Fig.2, the stiffness matrix is of the form

C ) >
S5\t N2 S, x
Fig.2
E-Al 1 -1
kf (A l) = —— 1

wn-E2

where: A — the cross-sectional area, moment of and |
— the length of the bar.

3 Transformation of coordinate axes

In order to determine the stiffness property of
the complete structure, a common datum must be
established for all unassembled structural elements
so that all the displacements and their corresponding
forces will be referred to a common coordinate
system.

Since the stiffness matrices ks and kf are
initially calculated in local coordinates, (X, y, z), it is
necessary to introduce transformation matrices
changing the frame of reference from a local to a
datum coordinate system, (X, Y, Z). This relationship
is expressed by the matrix equation

u=R. & 2
where R is rotator matrix between the element
displacements u in the local system and the element
displacements U in the datum system. The elements
of R are the cosines of angles between the local and
datum coordinate system.

For a beam element we have R = R1, with

coo0O0

OCOO IOXmOX ox
Rl:OOCO’ C:IOymOynOy

0 0 OC IOZ mOZ nOZ

lox = €os(0Ox,0X); mg, = cos(Ox, OY);
Nox = €o0s(Ox, 0z); 1y, = cos(Oy, OX);

oy = €0s(Oy, QY); ng, = cos(Qy, OZ);
l,;, = cos(Oz,OX); m,, = cos(Oz,OY);
and n,, = cos(Oz,0Z).

3)

m

2
The matrix R = R2 for a pin-jointed bar is
R2: IOX mOX nOX O 0 0 (4)
0 0 0 Iy my Ny

with the above notations. Then, as explained in
[5], we obtain the relationship between the local
stiffness matrix, ks or kf and these stiffness matrix

written in a datum coordinate system, ks and H,
respectively:

ks = R1T -ks- Rl (5)

kf = R2T -kf - R2 (6)

In the next step, we built the stiffness matrix for the
complete structure, K, summing all the overlapping

terms of the matrix ks or kf , which correspond to

the adjacent elements. Thus, we must number the
nodes, which make the connection between the cable
and the foundation to be after the nodes of beam
elements.

Finally, in order to obtain the nodal
displacements of the considered structure, we must
find out the solution of the following matrix relation

KU=F @)

where the external loading matrix F, correspond to
the displacements U. As the above relation has been
established for a free structure, the matrix F will also
contain the reactions and K will be a singular matrix.
In order to calculate the unknown displacements Uy,
in the active forces direction, Fa, as well as the
reactions, Fr and the forces due to the imposed
displacements, F,, the equation (7) will be written as
follows

Fa Kan Kia Kia Kéa | [Ua
Fi | _ | Kna Ky K K& | Y (®)
Fr Kra Kr Krr K&z 0

0 KCA KCI KCR KCC UC

Here Uc is the unknown displacements of nodes in
the directions without the imposed displacements and
the active forces. From the above system (8), Uc, Ua,
Fr, F) can be immediately obtained with the next
relations:
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Kan = Kaa — K&y - Kk - Kep

KRA = Kar — K(-ER 'Kécl: Kea
K = Kri — Kz - Kt Ky )
Kia = Kia = KE, : K&l; - Kea

Up=Kas - (Fa—KJ-U))
+ Kt - (Kea - Kpa - Kiy = Kep) -U;
FRZKRA'KK}\'FA_

_(KRAK;&KITA _KRI)'UI
4 Numerical results

Figure 3 shows a structure subjected to the
forces and the moments in the nodes 4 and 5.
Because this loading, we neglect the displacements:
Us, Us, Us, U7 for the beam elements, which have
very small values. Hence, four degrees of freedom
per node are necessary. For a node i we note: u; = uj,
Uz = Vi, U3 = W;, and ug = & (Fig.1). The elements: 2-
6, 3-7 and the cables have two degrees of freedom
per node.
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The nodes coordinates in a datum coordinate
system, (X, Y, Z), the cross-sectional area, A and I,
inertial moment of the elements are presented in the
tables:

Table 1
Node X Y Z
m m m
1 -15 0 0
2 -15 10 0
3 -1.5 14 0
4 -15 20 0
5 1.5 20 0
6 1.5 14 0
7 15 10 0
8 15 0 0
9 9 0 2
10 9 0 -2
11 11 0 -2
12 11 0 2
13 -9 0 2
14 -9 0 -2
15 -11 0 -2
16 -11 0 2
Table 2
Elements A[m?] 1,[m?]
beams 0.071 0.0004
cables 0.000113 -
stiffeners 0.015 -

The modulus of elasticity is E = 2.1-10"° daN/m?. For
each beam element we have

13ks(A1,,1)/E =
A2 0 o o -A% 0o 0 o0
0 1221 0 6l 0 -121 0 6l
0 0o 121 o0 0 0o 121, 0
| o et 0o aa® o —sla1 0 2112
A2 0 o0 o A1 0o 0o o0
0 1221 0 -6 0 121 0 —6l-I
0 0 -121 0 0 0o 121 0
I 611 0 202 0 -6l 0 4112 ]

and R1 is of the next form, excepting the element 4-5
for which R1 equals with the unity matrix(6x6),
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0100 0 0O0O

-1 000 0 O0O0O

0 01 0 0 O0O0O

Rl 0 001 0 0O0O
0 000 O 100

0 000 -1000

0 000 O 010

|0 000 0 00 1]

and then we wuse (5) to obtain ks in a datum

coordinate system, hence ks .
Now consider the bars and for this we have
(1) and

R2(%, Y1, 21, %o, ¥2. 25) =

- X - 2y —1Z
X1|2y1|y2 1|2 0 0 0
0 0 0 AT Nn"Y2a"%H

| | |

and with (6) we calculate kf .

For our example, we find the stiffness matrix
for the complete structure with next relations.

1. If1I<N1<8,N2<8,i=1,2,..,6,
j=1,2,..,6 for the beam elements and i = 1,2,3, j =
1,2,3 for the stiffeners:

K[6(N1-1)+i,6(N1-1)+ j]=

= K[6(N1-1)+i,6(N1-1)+ j]+k i, )
K[6(N1-1)+i,6(N2-1)+ j] =

= K[6(N1-1)+i,6(N2-1) + j]+K, (i, j)
K[6(N2-1)+i,6(N1-1)+ j] =

= K[6(N2-1)+i,6(N1-1)+ j]+ks i, )
K[6(N2-1)+i,6(N2-1)+ j]=

= K[6(N2-1)+i,6(N2-1)+ j]+K, i, j)

2. 1f1<N1<8,N2>9,i=1,23,j=1,23for
the cable:

K[6(N1-1)+i3(N2-1)+48+ j]=

= K[6(N1-1)+i,3(N2-1)+ j+48] +K, i, )
K[6(N1-1)+i,6(N1-1)+ j] =

= K[6(N1-1)+i,6(N1-1)+ j]+ ki (i, J)

K[3(N2-1)+48+i,6(N1-1)+ j] =

= K[3(N2-1)+48+i,6(N1-1)+ j]+Ks i, )
K[3(N2-1)+48+i3(N2-1)+48+ j]=

= K[3(N2-1)+48+i3(N2-1)+48+ j]+ky i, ])

where we consider for each element, that the ks or
kf matrix is of the form

KK,
[@ EJ (0

Writing a program in MathCAD, where we used the
relations (9) and the division matrix method, we find
the displacements in step 1 (all cables):

U, [ —210] Ue (460 |
v, -17 Vs 1.7
W, 0 Wi 0
6, 4.1 O -20
U, -220 Us -20
Va|_joe | —21 | Vo |_yoe.| 18
W, 0 W 0
6, 20 Os -20
U, - 460 U, -21
v, -2.13 Vv, 1.5
A 0 W, 0
|6, | | 30 | 16, | | 5.3 |

and the reactions:

- in the nodes 1, 8:

1900 2400
25450 — 22400
Ry = , Ro= )
0 0
—-9900 11500

- in the nodes 9, 10,.....,16:
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Xo ] [ 1395 ] [X;5] [1307]
Y, -1860 Ys | | 1862
Z, 372 Z,| |-372
X10 1395 X4 | | 1397
Yo | |-1860 Y, | | 1862
Z1 -372 Zy4 372
Xy | | 961 [ | Xy | | 905
Y, | |-1902 Y5 | | 1906
Z, 190 Zis | |-191
X1, 904 X1 905
Y, | |-1902 Yis | | 1906
12, ] | -190 | | Z4| | 191 |

Analyzing the sign of the cable reactions results
that these are compressed if Y > 0 and in tension if Y
<0.

Now we repeat the previous calculus for the
structure defined by the 1, 2,....., 12 nodes and
the same matrix F. The new values of the
displacements and of the reactions are

U, [-360] Us [-630]
Vv, -27 A 2
W, 0 W 0
0, 8 05 -20
U, -360 Us -380
A 104, -34 | Ve 104, 2
W, 0 W, 0
0, 20 s -20
U, —-630 U, -340
v, -4 A 1.7
w, 0 W, 0
16, | | 30 | 16; | | —20 |
3228 ] 2419
39900 — 25450
Rl - 0 1] RZ = 0 ]
-16810 | 13780

5
[ Xg ] [ 2252 ]
Y, | |-3003
Z, 601
Xy | | 2252
Y, | |—-3003
Zo | | -601
Xy | | 1236
Y, | |-2602
Z 260
Xy, | | 1236
Y, | |-2602
| Z,, | | 260 |
5 Conclusion

A completely procedure for the static analysis of
structure which include cable elements has been
presented. The algorithm has the great advantage that
may be used helpless a finite element program and it
may be extended to analyze these composite
structures for any external loading. In this case a
single modification appears: the matrix ks will have
the corresponding form to 6 degrees of freedom per
node, [5].
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