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Abstract: In this paper we show how differential geometric methods can be used to solve both control and
estimation problems on manifolds which result from real-life applications, in particular from problems in
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1. Introduction

Geometric control theory, using differential geomet-
ric methods to deal with control problems on arbi-
trary manifolds (in particular Lie groups and their
symmetric spaces), has provided new methods which
are particularly useful for motion planning problems
in areas such as robotics, spacecraft attitude control
and the control of underwater vehicles, but also in
quantum computing and related fields, as the kine-
matics involved in such problems can always be re-
presented as a dynamical system on a Lie group of
admissible motions. In this paper we show how ge-
ometric methods in optimal control theory can be
used to find constructive solutions to various mo-
tion planning problems. Our main tool will be the
following version of (a weak form of) Pontryagin’s
Principle (cf. [10], Theorem 2) which is tailored to
control problems on Lie groups in which the govern-
ing differential equation is invariant under the group
(whereas the cost functional can arbitrarily depend
on both the state and the controls).

Theorem 1. Let G be a Lie group with Lie algebra
g and let (Ey,..., Ey) be a vector space basis of g. Con-
sider a right-invariant dynamical system §(t) = U(t)g(t)
evolving on G where U(t) is the sum of a controlled
term > i ui(t)E; and a drift term Z?:m-l—l u; E; where
Umt1, - - -, Up are gven constants. Given elements gy € G
and g1 € G, controls t — wu;(t) (where 1 < ¢ < m)
are sought which steer the system from g(to) = go to
g(t1) = g1 while minimizing a cost functional of the form
ftt; @(g(t),u(t),t)dt. If t — u*(t) is an optimal control
and if t — ¢*(t) is the resulting state trajectory in G so
that g*(t) = U*(t)g™ (t) then there exist a curve t — p*(1)
in g* \ {0} and a number ¢ < 0 such that

The control laws derived from Theorem 1 are in open-
loop form. As soon as one converts them to closed-loop
form, one is faced with the problem of feeding data into
the loop which are corrupted by measurement noise which
needs to be filtered out. Since the state variables are ele-
ments of a nonlinear manifold, this immediately leads to
questions concerning statistics on manifolds. Of particular
interest to us is the problem of estimating system param-
eters which are constrained to lie on a manifold whose
dimension is lower than that of the space in which the
system equations are formulated. Typical examples aris-
ing in space flight dynamics applications are as follows:

e the determination of attitude quaternions q¢1, ¢, ¢3,
q4 which have to satisfy the constraint ¢?+¢2+¢2+¢% = 1;

e the simultaneous determination of the rotational
motion, the locations of observable landmarks and the
gravitational potential of a small solar system body such
as a comet, where the relevant parameters are not inde-
pendent, but satisfy functional relations;

e the simultaneous determination of gravitational
constants of solar system bodies and of the scaling fac-
tors used to convert position and velocity data from
ephemerides to the units used in the orbit determination
program (cf. the solar and the lunar constraint discussed
in [8], pp. 25/26, 111/112, 120/121).

In these situations the question arises how the con-
straints can be properly incorporated into a classical es-
timation scheme in which, either through least-squares
batch processing or through Kalman filtering, linear up-
dates to pre-existing estimates are calculated. One possi-
ble approach 1s outlined in this paper.

2. Attitude Control

The attitude or orientation of a spacecraft (modelled as
a rigid body) is the matrix g € SO(3) whose rows are
the directions of the body’s principal axes with respect
to some reference coordinate system. Let us denote by
I1, I, Is the moments of inertia, by wi,ws, w3 the angu-
lar velocities and by T, 75,75 the exerted torques about
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the principal axes. Then the attitude kinematics of the
spacecraft are described by the equation

g(t) = (wilt)Er +wa(t) Er +ws(t)E3) g(1)

where

0 00 00 -1
Ei=|0 0 1|,B,=[00 0| FEs=|-
0—-10 10 0

o = O
o O =
oo o

whereas the dynamics are governed by Euler’s equations

Ilwl(t) = (12 — 13) (.dz(t) (.dg(t) + T1 (t),
Iz(.i)z(t) = (13 — Il) (.dg(t) wl(t) + Tz(t),
Ig(.i)g(t) = (Il — 12) wl(t) (.dz(t) + Tg(t)

It 1s clear that the kinematical equation has the form of
the state equation considered in Theorem 1, namely that
of a right-invariant system on a Lie group. In the fol-
lowing subsections we present different scenarios in which
Theorem 1 can be used to devise control laws to produce
desirable attitude motions of the spacecraft.

2.1 Optimality of Eigenaxis Slews

An eigenazis slew is an attitude manceuvre during which
the direction of the angular velocity vector remains fixed
in space. Eigenaxis slews are routinely employed because
they are easily understood geometrically and can also be
easily implemented in attitude control systems. The fol-
lowing result shows that they are also characterized by a
certain optimality condition.

Theorem 2. Suppose that the angular velocities of a
rigid body about all three axes can be controlled. If the body
is steered from an initial attitude g(to) to a target attitude
g(t1) = ¢1 via controls t — w¥(t) (where i = 1,2,3) which
minimize a cost functional

/t ) (@L(0)? + wa (1) + wa(t)?)dt

then there are constants ¢; such that wi(t) = ¢;/q(t) for
1<i<3.
Proof. See [10], Corollary 3. ]

For the functions w’ in Theorem 2, the attitude kine-
matical equation can be explicitly integrated, yielding

g (t) = exp ((Q(t) — Q(t0))C) go

where @) is any antiderivative of 1/¢q and where C' = ¢; B+
caFatc3Es. Thus the target condition g(t1) = ¢1 becomes
an equation for the three unknowns ¢; which can be solved
analytically. The result is as follows.

Theorem 3. In the situation of Theorem 2, let v :=
195" and a = arccos((tr['y] - 1)/2) and let @ be any
antiderivative of ). Then the optimal controls are given
by the condition

C1 a Y23 — 732
C2 = - Y31 — 713
o T 2@ —Qw) |Jh 0
Proof. See [10], Theorem 4. ]

2.2 Underactuated Axisymmetric Spacecraft

Here we consider the problem of manceuvring an axisym-
metric spacecraft in the case that no torques about the
symmetry axis can be exerted, for example due to a
thruster failure. An application of Theorem 1 in this case
yields explicit control laws which steer such a spacecraft
between states of pure spin between prescribed attitudes.

Theorem 4. Suppose that the angular velocities of a
rigid body satisfying I, = I about the first two ares can
be controlled whereas the body spins with constant angular
velocity ws about the third axis. Let q be a positive weight
Junction and let @ be an antiderivative of 1/q. If the con-
trols t — wi(t) (where i = 1,2) steer the body from an
initial attitude g(ty) = go to a target attitude g(t1) = ¢1
while mintmizing the cost functional

t1
[ (5007 + e )
to
then there are constants r > 0, a and B such that

) =r cos(aQ(t) — wat + ﬁ)/q(t),
wi(t) = r sin(aQ(t) — wat + ﬁ) Ja(t).

Proof. See [12], Theorem 3. =

To be useful in practice, we have to identify the con-
stants r, o and 3 in terms of the initial attitude gy and
the target attitude g;. This can be done in a constructive
and easily implementable way.

Theorem 5. In the situation of Theorem 4, choose
the antiderivative Q) of 1/q such that Q(t1) + Q(ty) = 0.
Moreover, let v := gi1gy* € SO(3). Then the constants r,
a and B i Theorem 4 can be determined as follows.

o Ify33 =1 (s0 that y13 = 0 and hence ¥, +7v3, = 1)
let ¢ be such that v11 = cosp and v12 =siny. Then § is
arbitrary, and the parameters o and r are given as follows.
Let | = 27T/(Q(t1) - Q(to)) and let g be the unique
number in the interval [0, f) such that ag = <W3(t1—t0) —
@)/(Q(tl) - Q(to)) modulo f. If ag = 0, then r = 0, and

a is arbitrary. If ag > 0 we have

. {ao—f if a0 < f/2,

ap if g > f/2; (f+o)(f—oa).

r =
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o Ify33 = —1 (so that y13 = 0 and hence v3, + %, =
1) let ¢ be such that 411 = cosg und 12 = sing. Then
r= F/(Q(tl) —Q(to)), a=0and f = (p+wsto+wsty)/2
modulo 2.

o If|vas| < 1 thenr, a and B can be found by applying
the following algorithm:

Step 1. Determine the angle u (uniquely determined

modulo 27 ) such that
[cosu] _ ! [731 —’732] [’713]
sin u 1—v35 |32 31 ] L2
and let f = (utwstotwsty)/2 and v := (utwst1—wsto) /2.

Step 2. Determine the smallest number 6 > 0 which
satisfies one of the two equations

1 cos v sinv | | y31
V1—=733 |sinv  —cosv | |32
cos h(6) ++/y33 — cosf
sin@/+/1 — cos

+sin h(6)
where h(0) := (0/2)\/v33 — cos 0//1 — cos 0, this number
lies in the interval [arccos yss, 27 — arccos yss).
Step 3. Let

10 33 — cos @ J
v/ an
Qt1) — Q(to) 1 —cosf
9 1 — 733
Q(t1) — Q(to) V1 —cosb
where in the definition of « the upper/lower sign has to

be chosen if 0 satisfies the equation with the upper/lower
sign wn Step 2, respectively.

Proof. See [12], Theorem 5. =

Froh) |

If ws # 0 it is not really useful to target for a spe-
cific attitude ¢, but rather for any attitude which has a
prescribed third row gf es (namely a prescribed target di-
rection for the spin axis at the end of the manceuvre). In
the next theorem we will show how this can be done in
an optimal way. (We emphasize that both Theorem 4 and
Theorem 5 are valid no matter whether wz = 0 or wg # 0.)

Theorem 6. Suppose that the angular velocities of a
rigid body satisfying Iy = Iy about the first two axes can
be controlled whereas the body spins with constant angular
velocity ws about the third axis. Let q be a positive weight
Junction and let QQ be an antiderivative of 1/q satisfying
Q(t1) + Q(to) = 0. Moreover, let d be a given unit vector.
Assume that the controls t — wi(t) (where i =1,2) steer
the body from an initial attitude g(to) = go to an attitude
g(t1) = g1 satisfying g% es = d while minimizing the cost
functional given in Theorem 4. Let

Y31
V32
733

= god = g(to)d.

Then the constants r, a and 3 in the control law in Theo-
rem 4 which give rise to the optimal control can be deter-
maned as follows.

o [fyss =1 then r =0, and «a, 5 are arbitrary.

o [fvsz3 = —1 thenr = F/(Q(tl) —Q(to)), a =0 and
3 s arbitrary.

o If |yas| < 1 then, denoting by v the angle (uniquely
determined modulo 2w} such that

cosv| _ 1 —"33
sinv | m ¥s1 |’

arccos(7yss)
we have r = ———————— a =0 and f = v + wsty.
Q1) - Q(to) st
Proof. See [12], Theorem 6. ]

2.3 Slews Avoiding a Forbidden Direction

In many space missions it is important that certain body
axes stay away from forbidden space directions, a typical
example being the re-pointing of a space telescope from
one observation target to the next during which the tele-
scope must not be pointed towards bright objects even
for a short time. Typically, control specifications to ef-
fect such manceuvres are not determined by the on-board
software, but in the control centre and then uplinked to
the spacecraft, and avoidance of forbidden directions is en-
sured in a rather roundabout way by performing, if neces-
sary, not a single slew, but a sequence of slew manceuvres
connecting the initial attitude to the target attitude via
a sequence of intermediate attitudes chosen in such a way
that forbidden directions are avoided. As one step towards
a higher level of automation and on-board autonomy, we
address the following problem: Steer a rigid spacecraft
within a given time interval from rest to rest between pre-
scribed attitudes in such a way that a given body-fixed
direction b is guaranteed to avoid a given space-fixed di-
rection d during the motion. We solve this problem us-
ing optimal control theory with a cost functional which
penalizes both high angular velocities and proximity to
forbidden attitudes.

Theorem 7. Let go,g91 € SO(3) be given attitudes,
let [to,11] be a given time interval, let b € R3 the body coor-
dinates of a body-fized direction (“telescope direction”) and
let d € B? be the space coordinates of a given space-fized
direction (“forbidden direction”). Let q : (to,t1) — (0, 00)
be a function which is absolutely continuous on each closed
subinterval of (to,t1), satisfies q(t) — oo ast — ty and
t — t1 and also satisfies the condition ftt; q(t)~tdt = 1.
Moreover, let x : I — (0,00) be an absolutely continuous
Junction defined on some interval I C [—1,1] containing
(b, god) and (b, g1d). Let the angular velocities t — w;(t)
of a rotating rigid body be such that

| a0 )a(0) (10 0+ w(07)

to
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becomes minimal. Writing Q = (qw1, qwa, qws)?, ¢ =
(bygd), I := X'[c]/(2qx[c]) and ¢ := b x gd (so that in
particular ¢(t) = cos (H(t)) where 0(t) is the angle between
the telescope direction and the forbidden direction at any
time t), we have

Q4 2P(Q)Q = Flllf.

Proof. This follows from a direction application
of Theorem 1 in conjunction with the bracket relations
[Eh, Ba] = —E3, [Eo, B3] = —Fy and [E3, Bh] = —F>. =

The system derived in Theorem 7 for the function
t — Q(t) turns out to be completely integrable.

Theorem 8. There are constants C1, Cy and
Cs such that along the trajectories of the system ) +
2F(Q, 0)Q = F||Q||?¢ we have
Gy = g = &
x(¢) x(¢) x(¢)
Proof. We first verify that each of the functions
Q1(t) = ||QW)], P@2(t) = (Q),d) and P3(t) =
(), g(t)d) is a solution of the differential equation

Q| =

4+ 2F(Q,0)0 = 0.

But this equation has x[c] as an integrating factor, since
2F(82, @) equals (d/dt)(ln X[c]), and hence can be rewrit-
ten in the form (d/d¢)(x[c]®) = 0 which yields x[c]® = C.

[

Remark. Plugging the equation ||Q]|? = C1/x(c)
into the cost functional in Theorem 7 yields ftt; Chrq(t)~tdt
= ('1; hence the constant C' indicates the control effort.
As a possible comparison manceuvre which avoids the for-
bidden direction we can always choose an eigenaxis slew
with angular velocities w;(#) = ¢;/q(t) where the ¢; are
constants such that \/c? + ¢2 + ¢Z < 27 (see Theorem 3);
hence any available upper bound x* for X((b, g(t)d>) yields
the estimate C < 4r2y* for Cy.

Theorem 8 can be used to write the optimal angular
velocities at any time as a function of the current atti-
tude. Ideally, we would like to plug the expression thus
obtained for w(t) = @(g(t),t;C’l,Cz,Cg) into the kine-
matical equation for the attitude, integrate the resulting
differential equation for g (starting from the initial condi-
tion g(tg) = go) to obtain ¢ — g¢(t;C1, C2,C3) and then
determine the constants C; by matching ¢(¢1; C1, Cq, Cs)
with g;. Unfortunately, the integration cannot be carried
out by quadratures. Therefore, we derive three equivalent
scalar equations which, at least in principle, can be used to
determine the constants of integration. It turns out that
the function ¢ — ¢(t) satisfies the differential equation

&2 = Cl(l—cz)x[c] + 2C5Csc — 022 i C?%
q*x[c]?

which can be explicitly integrated if y 1s suitably chosen;
one possible choice is x(x) := 1/(1 — ). It turns out
that for this choice there are only two possibilities for the
function c: either it is strictly monotonic (which means
that the angle between the telescope axis and the for-
bidden direction either increases or decreases throughout
the manceuvre), or else ¢ is negative for the first part of
the manceuvre and positive for the second (which means
that the telescope axis first moves away from the for-
bidden direction for some time and then approaches it
again until the end of the manceuvre). The exact deter-
mination of the constants Cy, C5 and C3 from the ini-
tial attitude and the target attitude is too technical to
be described (see [13] for details); suffice it to say that
the calculations boil down to solving a quartic polyno-
mial equation and making several case-by-case distinc-
tions, with the consequence that the control algorithm
does not require iterative methods and hence can be exe-
cuted in a fixed number of steps which is known a priors,
this is important if the algorithm is supposed to be au-
tonomously executed by the on-board software. Moreover,
since the angle between the telescope direction and the
forbidden direction during the manceuvre is never smaller
than at the beginning or at the end of the manceuvre,
there is no need to prescribe a safety margin for this an-
gle during the manceuvre. This observation also provides
the upper bound x* := max{x((b,g0d>),X((b,g1d>)} for
X((b,g(t)d>). Applying Theorem 7 in conjunction with
the a priori estimate C; < 4x2x* given in the above re-
mark, we can derive an a priori bound on the required
torque ¢t — T(¢) in terms of the spacecraft characteris-
tics, the desired attitude change and the manceuvre du-
ration D. Conversely, if there is an actuator constraint
[|T(#)|] < Tmax then solving for D yields a duration in
which an admissible manceuvre resulting in the desired
attitude change can be carried out.

3. Parking a Car

As a second application of the approach proposed in the
introduction, we consider the problem of parking a car.
With respect to a fixed Cartesian coordinate system, we
denote by (z,y) the position of the car’s centre of mass
and by ¢ the angle between the car’s axis and the hori-
zontal; moreover, we denote by u the velocity and by w
the angular velocity of the car. Then the kinematics are
governed by the equations

[yﬁii] = ul) [Zi?i((fi], B(t) = ().

To exhibit the symmetry of this control system, it is useful
to recast it as a control system on the group G = SE(2,R)
of planar motions, which we represent as the matrix Lie

group

G = {(ﬁ (1)) | D ESO2,R),veR?Y.
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The Lie algebra g of GG is spanned by the generators
010 000 000
Ey=|-1 0 0|, B1=1{0 0 0|, E2={0 0 0
000 100 010
which satisfly the bracket relations [Fy, Ey] = —E-s,
[Eo, E5]) = Fy and [Fq, Es] = 0. Associating with each

trajectory t — (l‘(t), y(t), gp(t)) of the original system the
trajectory t — g(t) in G defined by

cosp(t) sing(t) 0
g(t) = | —sinp(t) cosp(t) 0],
(1) y(t) 1
we find that
g(t) = (w(t)Eo +u(t)E1)g(t),

which is a right-invariant control system on the Lie group
(. We now ask for the controls t — u(t) and ¢t — w(?)
which steer this control system from a given initial state
g(to) = go to a given target state ¢g(¢1) = g1 while min-
imising a cost functional of the form

[ (outo + petn?)ar

to

with a given function ¢ : ({g,t1) — (0,00) with ¢(¢) =
for t — t; and t — t; and given positive constants
a,8 € R. (A typical choice would be the mass of the
vehicle for a and its moment of inertia about the z-axis
for 8.) An application of Theorem 1 leads to the following
result.

Theorem 9. If the control functions t — u(t) and
t — w(t) forthe dynamical system considered are such that
the above cost functional is minimised and if () denotes an
arbitrary antiderivative of 1/q, then there are constants F,

C' and k such that

- _ﬁqf_t)snk (@Q(t) +C) ,

E VaFE
— Yo

Ve (Yew+).

where sng and cng denote Jacobian elliptic functions.
Proof. See [6], Theorem 2. ]

The determination of the constants E, C' and k in
terms of the initial and the target state is quite technical;
we refer to [6].

4. Quantum Computing

Data which are processed in a quantum computer undergo
a series of unitary transformations, and designing a uni-
versal quantum computer requires the ability to synthesize

arbitrary unitary transformations from simple (one-, two-
or three-bit) quantum gates; obtaining such a synthesis is
a problem in constructive controllability. The dynamical
system to be controlled 1s defined by the time-dependent
Schrodinger equation

Ut) = —iH@O)U®1), U(0)=1

where the Hamiltonian H can be decomposed as

m

H =

with a drift term Hy internal to the system and exter-
nally controllable Hamiltonians H;. (See [5].) For finite-
dimensional quantum systems the Schrodinger equation
is a right-invariant system on the (special) unitary group.
Since synthesizing controls in a time-optimal way seems to
be a difficult problem (see [5]), it may be worth studying
cost functionals as in Theorem 1 which may be easier to
work with and can still be time-efficient. Problems of a
similar nature also arise in spectroscopy; see [4].

5. Estimation of Constrained
Parameters

Let us consider a system whose evolution depends on
a number of parameters pi,...,p, which are not inde-
pendent, but are constrained to lie on an m-dimensional
embedded submanifold M of R™. We are given a number
N of noisy measurements which we combine to a mea-
surement vector i € RV, and we can, for any parame-
ter estimate p € M, compare the actually obtained mea-
surement vector pi with the theoretically expected mea-
surement vector p(p), thereby forming the residual vector
p(p) == i — u(p) € RY. We try to find an estimate p*
which is optimal in the sense that it minimises the size
of the residual vector (in which the entries are weighted
according to the assumed quality of the measurements by
using as a weighting matrix W the inverse of the mea-
surement covariance matrix). This is typically done in an
iterative way in which, in each step, an “old” estimate
Pold € M is replaced by a “new” (and presumably bet-
ter) estimate ppew. We show how this can be done in the
situation of constrained parameters, leaving aside all tech-
nicalities such as the use of a priori information or the use
of consider parameters. (Cf. [11].)

Step 1. Calculate the partial derivative matrix
A = Ou/dp € RN*" at the point pog as if p1,...,Pn
were independent parameters.

Step 2. Find a basis (v1,...,vy) of the tangent
space T, , M of M at the “old” estimate pog € M and
form the matrix S € R™*™ whose columns are vy, . .., Up,.
(In a vicinity of any point p € M, here p = pola, the
constraints are given by equations fi(p) = 0 (where
1 < k < n —m) whose gradients are linearly indendent

at p and hence can be shown to form a basis of (TpM)J‘;
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thus vy, ..., v, can be found as a basis of the orthogonal
complement of the vector space spanned by the gradients
of the functions f; at the point p.)

Step 3. Postmultiply A by S to obtain the ma-
trix A := AS € BRY¥*™ and solve the estimation prob-
lem associated with this matrix. In the normal equa-
tions formulation, this means computing the vector A :=
(ATWA) AT W p(pola) € R™ which has the covariance
matrix Cov(A) = (ﬁT Wﬁ)_l.

Step 4. Calculate the increment §p := Y ;o Agvy =
SA and perform the nonlinear update step ppew =
exp, .., (0p) where exp is the exponential function of the
manifold M (defined by exp,(v) := (1) where v is the
unique geodesic satisfying v(0) = p and %(0) = v). The
accuracy of the new estimate is given by the covariance

matrix Cov(dp) = SCov(A)ST.

To see an application in spacecraft attitude determination,
let @ ={(q1,42,95,9a) €R*| i + 45+ ¢5+¢5 =1}. An
orthonormal basis of the tangent space of () at an element
q = (q1, 92, g3, q4) 1s given by the columns of the matrix

—q2 —4¢3 —4q4
q1 qa  —(q3

S =
(q) —q4 q1 q2
43  —q2 q1

Hence if p1(q1, g2, 43, g4) € RY is a measurement vector and
if we denote by A(q) := (3/1/3((]1, q2, 43, q4))(q) € RNx4
the associated partial derivative matrix, then a typical
update step is given as follows: determine Ay, Ay, Az via

Ay
A = Az
As

= (ATWA)LATW p

where A := A(qo1a)S(qo1d), let dq == S(gaa) A, i.e.,

dq —q2 —q3 —4q4
$ _
6q2 — Al q1 _|_ AZ q4 _|_ AS qs3
qs —q4 q1 q2
dqa 13 —q2 01

4=4old

and calculate ||dq|| = /A? + A2 + AZ; then perform the

nonlinear update step

. 6q
= cos([8gl) gera + sin(l6al) - 75

QHeW

(Note that the geodesic v of @ satisfying v(0) = ¢ and
3(0) = v is given by ~(t) = cos(t]le]})g + sin (¢l o/ ]l
The treatment of estimation problems on more general
manifolds requires the development of concepts and meth-
ods in the statistics of manifolds; cf. [1], [2], [9], [15].
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