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Abstract: Using Perov’s theorem, a fiber generalized contractions theorem and its application given by Rus
[7], a theorem of differentiability of the solution of the following nonlinear integral equation

b
x(1) = JK (t,5,x(5),x(g(s)),x(a), x(b))ds + f (1), t€[a,p],

is given.
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1 Introduction

We consider the nonlinear integral equation
b
x(t) = .[K(l, 8, x(s), x(g(s)), x(a), x(D))ds + f (1), (1)

where a,8eR, a<p, a,pe[a,f] and xeC([a,B],R™).

In the paper [2] have been studied the existence
and uniqueness of the solution, continuous data
dependence of the solution and the approximation of
the solution of this nonlinear integral equation.

The integral equations of this type have been
studied in [1], [3], [4], [5], [6], [7], [8], [9].

The purpose of this paper is to give a theorem of
differentiability of the solution of the equation (1).

2 Notations and preliminaries

Let X be a nonempty set, d a metric on X and
A:X—X an operator. In this paper we shall use the
following notations:
Fi={xeX|A(x)=x} — the fixed point set of 4
A" =404", A"=1y, A':=4, neN.
Definition 1 (Rus [4] or [5]) Let (X,d) be a

metric space. An operator A:X—X is Picard
operator if there exists x €X such that:

(a) Fy={x"};

(b) the sequence (A"(xp))men converges to x, for
all xpeX.

Definition 2 (Rus [4] or [5]) Let (X,d) be a
metric space. An operator A:X—X is weakly Picard
operator if the sequence (A"(xp))nen converges for

all xpe X and the limit (which may depend on xy) is a
fixed point of A.

If 4 is a weakly Picard operator, then we consider
the following operator
A X > X, A”(x)=lim 4"(x),
n—>0

and it is clear that A”(X)=F,.

In order to study the differentiability of the
solution of the integral equation (1), we use in
section 3 the following theorem of differentiability
of the solution of the integral equation

b
x(t) = IK(t,s,x(s))ds +f(@), tela,pl, 2)

Theorem 1 (Rus [7]) We suppose that there
exists QeM,,,(R.) such that

()[(B-a)01" >0, as n— o ;

|K1(t,s,u)—K1(t,s,v)|

| <Q| .....
|Km(t,s,u) —Km(t,s,v)|

forall tse[a,pfl, u,yeR™.
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Then

(a) the integral equation (2) has a unique solution
x'(;a,b) eC([a,BL,R™);

(b) for all x"e C([a, B],R™) the sequence (x")pen,
defined by

b
"N (t,a,b) = [K(t,,x" (s;a,b))ds + £(£) 3)

converges uniformly to x', for all ta,be[a,f)
and

|xl" (t;a,b)—x (t;a,b)|

|x;1(t;a,b)—x (t;a,b)|

*
m

¥ tsa.6)~xi(5:0,0)
<[1-B-a)0l'[(B-a)0) ;

............... s

s (t:0.6) =, (1:0.0)

(c) the function
x[a,fx[afix[effl - R™,
(t;a,b) - x (t;a,b)
is continuous,
(d) if K(t,s,)eC' (R™R™) forall tse[a,f], then
x'(t,) eC'([afx[aflL.R™),
forall te[a, .

In the proof of this theorem one uses:

— the following fiber generalized contractions
theorem:

Theorem 2 (Rus [7]) Let (X,d) be a metric space
(generalized or not) and (Y,p) be a complet
generalized metric space (p(x,y)eR™).

Let A:XxY — XxY be a continuous operator.

We suppose that:
(D) ACey)=(B(x),C(x,y)), for all xeX, yeY;
(i) B:X —> X is a weakly Picard operator;
(iii) there exists a matrix QeM,,(R:), Q"0 as
n—oo, such that

p(C(x,y;),C(x,yg)) < Qp(ylayZ)a
forall xeX, y;, y,€Y.

Then, the operator A is weakly Picard operator.
Moreover, if B is Picard operator, then A is Picard
operator.

— and Perov’s fixed point theorem:

Theorem 3 (Perov) Let (X,d) be a complet
generalized metric space with d(x,y)eR™ and
A:X — X an operator. We suppose that there exists a
matrix QeM,,(R.) such that

(1) d(A(x),A()) < Qd(x.y), forall x,y €X;
(i) @" > 0 as n—w.
Then
(@) Fy={x'};
(b) A"(x) > x" as n—wo and

d(A"(x), ') < (I - 0)' Q"d(x0,A(x0)).

3 The main result

We consider the equation (1) in the following
conditions:

(c)) KeC([a,fIx[a, fIxRMxR™xR™xR™ R™);
(CZ)fe C([(X’ﬂ]’Rm);
(c3) geC([ap]), a<g(s)<b, sela,b].

The main result of this paper is the following
theorem:

Theorem 4 We suppose that there exists
0eM,(Ry) such that
D [4B-a)0]">0, as n—> o

K (8,110,113, 104) = K (8,5, 01,0, v3,v,)|

Gl <

|Km(t,s,u1,u2,u3,u4) —Km(t,s,vl,vz,v3,v4)|

|”11 _V11| +|u21 _V21| +|1431 _V31| +|“41 _V41|
<ol
|u1m - v1m| + |u2m - v2m| + |u3m - v3m| + |u4m - v4m|
forall tse[a,f], u,v,eR™, i=14.
Then

(a) the integral equation (1) has a unique solution
x'(5a,b) eC([enBL,R™);

(b) for all X’e C([ e, fI,R™), the sequence (x")nen,
defined by
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X" (t;a,b) =

b
= IK(t,S,X"(S;a,b),X"(g(S);a,b),X”(a;a,b),X"(b;a,b))dS +

+f(0) “4)

converges uniformly to x", for all ta,be[a,f]
and

x{ (t;a,b) — xl*(t;a,b)|

|x,';, (t;a,b) - x; (t; a,b)|

|x10 (t;a,b)— xll(t; a,b)|
<[1-4(8-a)0)' [4(8 - )0} ;

............... ’

[0, t30,) = x3, (130,D)
(c) the function
x e flx[eBlx[a.f] = R™,
(t:a,b) x'(t;a,b)
s continuous;,
(d) i
K(ts, -, )eC'(R™xR™xR™xR™R™)
forall tsela,pl,
then
x(6,) eCl([afIx[aLR™),
for all te[a,p.

Proof: We denote X := C([a.],R™). Let ||| be a
Chebyshev norm on X i.e.

ol

o 1
o0

[+
m

Let we consider the operator B:X — X defined by

I =

B(x)(t;a,b) =
b
:J'K(t,s,x(s;a,b),x(g(s);a,b),x(a;a,b),x(b;a,b))ds (5)

for all t,a,be[a,p].
From conditions (i), (ii) and Perov’s theorem we
have (a)+(b)+(c).
(d) Let we prove that there exists aai , % eX.
a

If we suppose that there exists %i , then from (1)
a

we have

ox' (t;a,b)
oa

=-K(t, a,x* (a;a,b),x* (g(a);a,b),x* (a;a,b),x* (b;a,b)) +

i OK ;(t,5,x" (s;0,b),x"(g(s);a,b),x"(a:a,b),x" (b;a,b))
+ - .

ox;

' ox (s;a,b) N
Oa

OK ,(t,5,x (s3a,b),x"(g(s):a.b),x (a;a,b),x" (b;a,b))
+ .
ox;

1

o' (g(skab)
Oa

. OK ,(t,5,x (s3a,b),x"(g(s):a,b),x (a;a,b),x (b;a,b)) .
ox;

i

_ox (a;a,b) N
Oa

. OK ,(t,5,x (s3a,b),x"(g(s):a,b),x (a;a,b),x" (b;a,b)) .
ox;

i

_ox (bsa,b) s
Oa o

This relation sugest to consider the operator
C:XxX — X, defined by

C(x,y)(t;a,b) =

=-K(t,a,x(a;a,b),x(g(a);a,b),x(a;a,b),x(b;a,b)) +

ox;

i

. j’[{aKj(t,s,x(s;a,b),x(g(s);a,b),x(a;a,b),x(b;a,b))

a

y(s;a,b)+

OK ;(t,5,x(s;a,b),x(g(s);a,b),x(a;a,b),x(b;a,b))
+ .
Ox;

i

y(g(s);a,b) +
N OK ;(t,5,x(s;a,b),x(g(s);a,b),x(a;a,b),x(b;a,b)) .
Ox;

i

-y(a;a,b)+

OK ;(t,5,x(s;a,b),x(g(s);a,b),x(a;a,b),x(b;a,b))
+— .
ox;

i

- y(b;a,b)lds . (6)

From condition (ii) it results that

['aKj(faS,ul’m’upm)'J <Q "

0x; |

forall t,se[a, B, u;cR™, i=14.
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From conditions (6) and (7) it results that
| Ceeyn-Clep) || <4820
for all x,y;,y,eX.

Now, if we consider the operator
A XXX — XxX, A=(B,0),

then the conditions of the fiber generalized
contractions theorem are satisfied. By this theorem it
results that the operator 4 is a Picard operator and
the sequences

xX"(t;a,b) =

b
= IK(t,s,x" (s;a,b),x"(g(s);a,b),x" (a;a,b),x" (b;a,b))ds + f(t)

¥ (ta,b) =

=-K(t,a,x"(a;a,b),x" (g(a);a,b),x" (a;a,b),x" (b;a,b)) +

[t b e ) i),
ox;

a 1

y(s;a,b)+

OK ;(t,s,x" (s;a,b),x" (g(5);a,b),x" (a;a,b),x" (b;a,b))
+ .
Ox;

i

y(g(s);a,b)+

. oK (t,s,x" (s;a,b),x" (g(s);a,b),x" (a;a,b),x" (b;a,b)) .
0Ox;

i

-y(a;a,b)+

OK (t,s5,x" (s;a,b),x"(g(s);a,b),x" (a;a,b),x" (b;a,b))
+ .
ox;

i

-y(b;a,b)]ds

converges uniformly (with respect to t,a,be[a,f]) to
(x"yeF, forall x"y’eX.

1
If we take x” = »” = 0, then »' =Zi and one
a

ox"

proofs by induction that )" = 2
a

So we have

xn uniformly

x as n—ow

ox" uniformly y* as n —> o

oa

ox and ox _

and so it results that there exists FARbdE
a a
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By a similar reasoning one proofs that there

exists Ox .0
b
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