
Temporal Authorizations Scheme for XML Document

Jing Wu, Jennifer Seberry, Yi Mu
Center for Computer Security,School of Information Technology and Computer Science,

University of Wollongong
CCSR, SITACS

Northfields Avernue
NSW 2522,Australia

[jw91, jseberry, ymu]@uow.edu.au

Abstract: In a large networking system,to manage authorizations in a complicated XML documents system
is very difficult. Recently, Access Policy Sheet (APS) [6] was introduced to provide a solution to access
control for XML systems. In this paper, we proposed a temporal access control scheme in APS where the
propagation of authorization rights is assumed.The authorization policies can be automatically revoked
when the associated time expires. We also provide conflict resolutions for our temporal authorization
system.

Key–Words: temporal authorization, partial order, XML, Access control

1 Introduction

XML has been widely applied to manage Internet
information. An XML document system could
be very large and complicated and its security
protection could be also very difficult. Protect-
ing such an XML system requires a sound access
control mechanism, which provides formalisms for
specifying, analyzing and evaluating security poli-
cies that determine how an access right is granted
and delegated among particular users.

Recently, researchers [2, 3, 4] have become in-
creasingly interested in developing authorization
models which are flexible and expressive enough
so as to handle the specification and enforcement
of multiple policies. [1, 5, 9] have expressed some
interest in developing XML authorization models
which are flexible and expressive enough for han-
dling the specification and enforcement of mul-
tiple policies. However, those models are very
complicated and difficult to realize. In our pre-
vious work, Access Policy Sheet (APS) [6], has
been introduced. This model provides a sim-
ple and dynamic scheme for XML authorization
management. However, temporal authorization
[8] and authorization propagation have still not
been investigated in XML based access control
systems including APS. In this paper, we propose
some new functions including temporal authoriza-
tion ,conflict resolutions and the time dependency

which can handle temporal access control policies
and policy propagation. In our model, the autho-
rization can be automatically revoked when the
associated time expires. By the hierarchical rela-
tionships along with the partial orders defined in
APS, we also provide a mechanism for the conflict
resolutions.

2 Predicates

In this section, we give the definitions of the pred-
icates of grant, delegate and cangrantwe used
in our model for describing the delgatable autho-
rizations.

Definition 1 (grant) grant is a 5 -tuple predi-
cate |S| × |O| × |T | × |A| × |S| .

grant(s,o,t,a,g) : grantee s is granted by
grantor g the access right a on object o with au-
thorization type t. We can use XML to define
the structure of rule Grant In the delegation pro-
cess, the entity that has been given the access right
to delegate by another entity, who has the access
right, can perform valid delegations. The follow-
ing is the definition of our delegable rules. Predi-
cate grant in XML is an authorization rule, where
the element grant with attributes grantee; ob-
ject,authorization type; access rights; grantor and
status. Here,

1

Proceedings of the 5th WSEAS Int. Conf. on DATA NETWORKS, COMMUNICATIONS & COMPUTERS, Bucharest, Romania, October 16-17, 2006 150

grantor ∈ S,
grantee ∈ S,
target+path ∈ O,
authorization_type ∈ {+|-|*},
where +,-,* denote allow, deny, and dele-

gable, respectively.
access_right ∈ {r, w,...},
status ∈{true, false}

Definition 2 (cangrant) cangrant (s,o,a): sub-
ject s has the right to grant access a on object o
to other subjects.

cangrant is a 3-tuple predicate |S|×|O|×|A|,
where S is a set of subjects which is a grantor or
a grantee; O = target + path(V,E), target is
an XML or URL, path is an XPath expression
that eventually selects specific portions (object) of
the XML document in XML tree where V is a set
of nodes and E is a set of edges; A is the set of
access rights. Here,

subject ∈ S,
target+path ∈ O,
access_right ∈ {read, write,a1,a2,...}
status ∈{true, false}

Definition 3 (delegate)

Delegate is a 4-tuple predicate :|S|×|S|×|O|×
|A| rule, where S is a set of subjects which is a
grantor or a grantee; O = target + path(V,E),
target is an XML or DTD, path is an XPath
expression that eventually selects specific portions
(object) of the XML document in XML tree where
V is a set of nodes and E is a set of edges; A is
the set of access rights. Here,

grantor ∈ S,
grantee ∈ S,
target+path ∈ O,
access_right ∈ {read, write,a1,a2,...},
status ∈{true, false}
delegate(g,s,o,a): subject g has directly or in-

directly granted subject s access a on object o with
delegable type.

3 Authorization Rules in APS

Directly using XML to describe access control of-
ten shows little advantage when the access control
system is complicated (e.g., when authorization
delegation and propagation are required). In our

model, authorization specifications or rules are
provided in an Authorization Policy Sheet (APS)
associated with the document/DTD. In APS, the
representation of authorizations is described in
terms of orders of the objects and subjects and
explicit authorization rules.

The APS is separate from the document and
DTD and offers great convenience in the adminis-
tration of access control for system administrators
due to its simplicity. The system administrator
can manage the system access control by the con-
cise rules given in an APS. The resultant XML
sheet can be generated from the corresponding
DTD and APS. APS also shows the great advan-
tage due to its convenience in the specification
of explicit rights and the implicit rights for XML
documents.
The partial orders of the access control com-
ponents, including subjects, object, types, and
rights, are one of the key components in an APS.
We will see that they can be used to simplify our
access control system by implicit rules in autho-
rization propagations.
The following figure of the XML DOM tree ex-
presses the hierarchy relation of the objects.

Figure 1: DOM tree, where each node represents
an object.

Now let’s see how to to determine the orders
of the objects. According to the structure of the
DOM tree. In our model, the root node has the
greatest order in any order chain. We can describe
the hierarchy relation as following: o1 is the root
of the tree, o2 and o3 are the descendant nodes of
o1, o4 and o5 are the children nodes of o2 and the
grandchildren nodes of o1, o6 is the child node of
o3 and the grandchild nodes of o1,

So, we have o1 > o2 > o4, o1 > o3 > o6,
and o1 > o2 > o5.

To provide fine grained specification in XML,
we utilize the XPath expression to identify the

2

Proceedings of the 5th WSEAS Int. Conf. on DATA NETWORKS, COMMUNICATIONS & COMPUTERS, Bucharest, Romania, October 16-17, 2006 151

structure of the tree. An Xpath expressions on
an XML document tree is a sequence of element
name or predefined functions separated by the
character: for the one branch of the tree: o1-
o2-o4, node o4 can be expressed as /o1/o2/o4/
and we have the partial order: /o1/ >/o1/o2/
>/o1/o2/o4/.

In general, we have the object partial or-
der chain: /root/ > /root/ child of root/ >
... > /root/child of root/grandchild of
root/.../.
For example:
//hospital/ > //hospital/room-info/ >
//hospital/room-info/patient/.

Thus, the order of the ancestor nodes in a
DOM tree are always greater than the order of
the descendant nodes.

An APS sheet consists of a finite set of rules
and orders. A rule consists of a set of predi-
cates and conditions associated with the predi-
cates. r = (P, C), where P = {p1, p2,,
pn} denotes a set of predicates and C denotes a
set of conditions. We describe a rule in APS as,

<p, attribute> <- <condition>

where p is a predicate of arity n in P.
condition denotes the condition with respect

to the rule of a predicate.
The structure of rule in DTD is defined as

following:

<!DOCTYPE rule[

<!ELEMENT rule (predicate+,condition*)>

<!ELEMENT predicate (grant, cangrant)

#IMPLIED>

<!ELEMENT condition (grant, cangrant)*>

]>

4 Syntax of Temporal Autho-
rizations

Access Policy Sheet (APS) allows an administra-
tor to manage the rules separated from XML doc-
uments and DTD.

Temporal authorizations enforce a rule to
have tenable validity. Formally, we add a time
interval ∆i to a rule, e.g., ri = (P, C)(∆i), where
ri is the temporal rule which has a temporal ar-
gument ∆i defined as ∆i = (si, ei) . si is the start
time and ei is the end time.

In APS, we define a temporal rule as

{\tt <p, attributes> <- <coditions><time_interval>}

For example,

<garnt, Alice, patient_info.xml,

//Star_Hospital/operation_info,

+, read&write, Bob> <-

<cangrant, Bob,

*+//Star_Hospital/operation_info, read>

<09/10/05,11/10/05>

This rule is applied to predicate grant,
condition cangrant and the validity period of
the authorization which contains the start time
and the end time. Grantee Alice has the ac-
cess right read and write on the Xpath speci-
fied object hospital info.xml, with the Xpath
//Star Hospital/operation info. Grantor
Bob has the authorization to grant read on the all
files of the same directory to others. The validity
period of the rule is 09/10/05-11/10/05.

According to the structure defined in the as-
sociated DTD (omitted), the authorization will
be able to be converted to the standard XML as
follows.

<rule>

<grant>

<subject>

<grantee>

<name> Alice</name>

</grantee>

</subject>

<object >

<target>hospital_info.xml</target>

<path>//nurse/operation_info>/path>

</object>

<authorization_type> + </authorization_type>

<access_right> read </access_right>

<access_right> write</access_right>

<subject>

<grantor>

<name> Bob</name>

</grantor>

</subject>

</grant>

<condition>

<cangrant>

<subject>

<grantee>

<name> Alice </name>

</grantee>

</subject>

<object >

<target>hospital_info.xml </target>

<path>//nurse/operation_info</path>

</object>

<access_right> read </access_right>

</cangrant>

<validity>

<start> 09-10-05 </start>

<end> 11-10-05 </end>

</validity>

</condition>

</rule>

3

Proceedings of the 5th WSEAS Int. Conf. on DATA NETWORKS, COMMUNICATIONS & COMPUTERS, Bucharest, Romania, October 16-17, 2006 152

5 Conflict Resolution

Since both positive and negative authorizations
can co-exist in our system, conflict resolution
among rules must be considered. Also, since
we allow implicit authorization (authorization
via authorization propagation), implicit conflicts
make the problem more complicated. The pol-
icy of “the most specific subject(or object) takes
precedence” which is proposed by E. Bertino [1]
cannot be adapted to our model. In fact, accord-
ing to the inherence hierarchy relation in the par-
tial order chain, we can get the policy of the “the
least specific takes precedence”. The basic idea of
solving conflicts is outlined as follows.

5.1 General Rules

Using delegation relation. According to the
delegation relation, if subject s delegates subject
s’ directly or indirectly an authorization on ob-
ject o and access right a, then, when a conflict
w.r.t o and a occurs, the authorization from s
(i.e. s is the grantor) will always override the one
from s’.
From authorization type inheritance. For
two conflicting authorizations w.r.t. a subject,
an object, and an access right, according to the
inheritance hierarchy of authorization type − >
+ > ∗, the authorization with a lower partial or-
der will override the one with a higher type order.
From subject inheritance. For two conflicting
authorizations w.r.t. an object, a right, and an
authorization type, according to the inheritance
hierarchy of subjects, if s> s’, then the autho-
rization w.r.t. s will override the inherited one
with s’.
From object inheritance. For two conflicting
authorizations w.r.t. a right, a grantor, and a
grantee, we consider the object inheritance rela-
tion. According to the inheritance hierarchy of
objects, if o > o’, then the authorization on o
will override the inherited one on o’.
From access right inheritance. For two con-
flicting authorizations w.r.t. a grantor, a grantee,
and an object, according to the inheritance hier-
archy of access rights, if a > a’, then the autho-
rization on a will override the inherited one on
a’.

5.2 Solving conflicts for Temporal Au-
thorizations

According to the definition of temporal authoriza-
tion in the preceding section, we denote by ri(∆i)
the temporal authorization, where ∆i = (si, ei) is
the validity period of rule ri, si is the start time,
and ei is the end time. Our conflict resolution is
twofold: resolution without the time factor (given
in the preceding section) and resolution with the
consideration of the time factor. For example, for
two conflict authorizations ri(∆i) and rj(∆j), we
consider the conflict resolution of the ri and rj

omitting the time factor first, using the methods
we discussed in the preceding section. Then, we
consider the time factors ∆i and ∆j . We denote
by φ the time overlap of two temporal authoriza-
tions, i.e., φ = ∆i∩∆j , by⇒ an override operator,
and by ⇔ a conflict operator.

Suppose we have two rules ri(∆i) ⇔ rj(∆j),
where ∆i = (si, ei), ∆j = (sj , ej). If φ 6= 0, we
have the following cases.

When si = sj and ei = ej , then we have{
ri ⇒ rj : ri(si, ei)
rj ⇒ ri : rj(sj , ej)

which means two conflict authorizations com-
pletely overlap. If ri ⇒ rj , then we have ri(si, ei).
If rj ⇒ ri, then we have rj(sj , ej). The following
cases are self-explanatory; therefore, we omit the
explanation.

In the case of si 6= sj , ei = ej , we have{
ri ⇒ rj : ri(si, ei), rj(sj , si)
rj ⇒ ri : rj(sj , ej)

In the case of si = sj , ei 6= ej , we have{
ri ⇒ rj : ri(si, ei)
rj ⇒ ri : rj(sj , ej), ri(ej , ei)

In the case of si 6= sj , ei 6= ej , we have{
ri ⇒ rj : ri(si, ei)
rj ⇒ ri : rj(sj , ej), ri(si, sj), ri(ej , ei)

When si > sj , ei > ej , we have{
ri ⇒ rj : ri(si, ei), rj(ei, ej)
rj ⇒ ri : ri(si, sj), ri(sj , ej)

4

Proceedings of the 5th WSEAS Int. Conf. on DATA NETWORKS, COMMUNICATIONS & COMPUTERS, Bucharest, Romania, October 16-17, 2006 153

If there is no time overlap between two con-
flict authorizations, then each rule is taken sepa-
rately without any influence from the other.{

ri ⇔ rj

∆i ∩∆j = 0
: ri(∆i), rj(∆j)

6 Conflict Resolution with Au-
thorization Propagation

Authorization propagation is implemented in
terms of the partial order of subjects, objects and
access rights. As defined in [4], we allow the im-
plicit rules derived from the explicit rules in terms
of partial ordering.

Figure 2: Rule propagation in a DOM tree.

Figure 2 shows an XML DOM tree, where ob-
ject o1 is the root of the tree, o4 and o2 are the
nodes on one branch of the tree. o4 is the descent
node of o2. According to the partial order rule
of the propagation on the objects we introduced
before, there exists a partial order relation o2 >
o4.

Suppose that in APS there are two authoriza-
tion rules r4 and r2 actively applied to o4 and o2,
respectively. With authorization propagation, r

′
4

is derived from r4. The authorization rule w.r.t.
o2 is then affected by r

′
4. If r4 is in conflict with

r2, then r
′
4 is also in conflict with r2. The conflict

resolution discussed in Section 6.1 is still applica-
ble.

We now discuss it further by considering the
time factor. Suppose that the above authoriza-
tions are temporal rules, r4(∆4) and r2(∆2). For
o2, r′

4(∆4) derived from r4(∆4) is also applied.
Consequently, we have{

r4(∆4) ⇔ r2(∆2)
∆4 ∩∆2 = 0

: r′
4(∆4) 6⇔ r2(∆2)

and

{
r4(∆4) ⇔ r2(∆2)
∆4 ∩∆2 6= 0

:

{
r′
4(∆4) 6⇔ r2(∆2);

r′
4(∆4) ⇔ r2(∆2); .

Here, we give an example. Suppose that in
XML document
medical.xml, there are two nodes in the DOM
tree, //hospital/room-info/ and it’s child node
//hospital/room-info/patient/, According to
the hierarchy relation of the objects, we have a
partial order relation:

{\tt //hospital/room-info/ >

hospital/room/patient/}.

Assume that r1(∆1) and r2(∆2) are two temporal
rules w.r.t. the above objects respectively.

r1(∆1) :
<grant, Alice,medical.xml,

//hospital/room-info/,+,read,Bob>(01/04/05,01/07/05)

r2(∆2) :
<grant, Alice,medical.xml,

//hospital/room-info/patient/,-,read,Bob>(01/06/05,01/12/05)

Through the propagation, r′
2(∆2) is derived from

r2(∆2). That is,
r′
2(∆2) :

<grant, Alice, medical.xml

//hospital/room-info/,-,read,Bob>(01/06/05,01/12/05)

Obviously, for the same object
medical.xml//hospital/room-info/, r′

2(∆2) is
in conflict with r1(∆1). ∆1 = (s1, e1) =
(01/04/05, 01/07/05) and ∆2 = (s2, e2) =
(01/06/05, 01/12/05) follow the case,s2 > s1 and
e2 > e1. According to the conflict resolution we
analyzed in section 6.2, r1 will override r′

2 in the
period of 01/04/05 to 31/05/05 and r′

2 will over-
ride r1 in the period of /01/06/05 to 01/12/05.

7 Conclusion

Access control in XML documents is very com-
plicated and difficult to manage. Access Policy
Sheet (APS) provide us with a concise methodol-
ogy to resolve the problem. In this paper, we pro-
posed a temporal APS which can handle time re-
lated authorizations including conflict resolution,
authorization delegation, authorization propaga-
tion. Based on our previous work , our new model
can be used to satisfy the temporal requirement
for XML authorizations.
This paper presents a compositional formal
framework for the specification of our temporal
access control policies. With a temporal intervals
of validity, the authorization would automatically

5

Proceedings of the 5th WSEAS Int. Conf. on DATA NETWORKS, COMMUNICATIONS & COMPUTERS, Bucharest, Romania, October 16-17, 2006 154

revoked when the associated temporal interval ex-
pires. By the hierarchical relationships along with
the partial orders defined in APS, we had given
the conflict resolutions in several conditions.

References

[1] E.Bertino, P.A. Bonatti and E. Ferrari , A
temporal role-based access control model,
ACM Transactions on Information and Sys-
tem Security,2001,4(3):pp191-233.

[2] Li Qin, Vijayalakshami Atluri, Concept-
Level Access Control for the Semantic Web,
ACM workshop on XML Security, October
,2003.

[3] Designing a Distributed Access Control Pro-
cessor for Network Services on the web. ACM
workshop, Nov,22, 2002.

[4] D. Samarati, E.Bertino and S. Jajodia, An
Authorization Model for a Distributed Hy-
pertext System, IEEE Trans On Knowl-
edge and Data Engineering,8(4), pp 555-562
,1996.

[5] Chun Ruan, Vijay Varadharajan and Yan
Zhang, A Logic Model for Temporal Autho-
rization Delegation with Negation, Springer-
Verlag,ISC 2003, LNCS 2851, pp 310-324

[6] Jing Wu, Yi Mu, Jennifer Seberry, and Chun
Ruan, Access Policy Sheet for Access Control
in Fine-Grained XML, The First IFIP Work-
shop on Trusted and Autonomic Ubiquitous
and Embedded Systems (TAUES 2005), Lec-
ture Notes in Computer Science, Springer
Verlag, 2005, pp. 149-161.

[7] Chun Ruan and Vijay Varadharajan and Y.
Zhang, Logic-based reasoning on delegatable
authorizations, In proc. of the 13th interna-
tional Symposium on Security and Privacy,
IEEE Computer Society Press,1997, pp 31-
42.

[8] E.Bertino, C.Bettini,E. Ferrari and P. Sama-
rati, An access control model supporting pe-
riodicity constraints and temporal reason-
ing, ACM Transations on Database Sys-
tems,1998,23(3): pp231-285.

[9] Francois Siewe, Antonio Cau, Hussein Zedan,
A Compositional Framework for Access Con-
trol Policies Enforcement, FMSE’03, October
30,2003, Washington, DC,USA,pp 161-172.

6

Proceedings of the 5th WSEAS Int. Conf. on DATA NETWORKS, COMMUNICATIONS & COMPUTERS, Bucharest, Romania, October 16-17, 2006 155

