
Using fractal dimension in tumor growth evaluation  
 

 
RADU DOBRESCU *, CATALIN  VASILESCU**, LORETTA ICHIM* 

*POLITEHNICA University of Bucharest, Faculty of Control & Computers 
** Fundeni Clinical Institute, Department of General Surgery and Liver Transplantation  

ROMANIA 
 
 

Abstract: - This paper proposes a model to simulate the growth of tumors in two dimensions and to investigate 
the role of a random decrease in the adhesion forces of tumor cells and its effect on tumor morphology. The 
experimental results conclude that a decrease in cell adhesion, controlled by a model parameter σ, can explain 
both tumor surface roughening and cell detachment. In the same time it was shown that tumor boundary fractal 
dimension and roughness increase with σ and consequently that a decrease in adhesion is relevant for the tumor 
transition from benign to malignant. In this way it was demonstrated that the morphology of the invading front 
is influenced by changes in the adhesiveness parameters. The simulation was extended by including 
proliferation and so it was established that an increased proliferation rate usually results in an increased depth 
of invasion. 
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1 Introduction 

 
A tumor is an uncontrolled cellular growth initiated 
by a single cell due to mutations in its genome. 
Tumor cells do not obey hormone or nervous signals 
implying that local homeostasis have been lost. All 
cells in a tumor are clones, i.e., they descend from 
the same initially mutated cell. During tumor growth 
and evolution, mutations continue and cells behave 
differently from the normal cells of the tissue where 
they appeared. In advanced stages of cancer, cells 
start to detach from the tumor and invade the blood 
stream or lymphatic system.  There they can be 
carried to other body parts producing new tumors 
(metastatic or malignant cancer). The detachment 
and invasion of other tissues result in part from the 
incorrect expression of adhesion molecules on the 
cell's surface for the mutated genome. This process 
causes a decrease in cellular adhesion between cells 
with additional consequences such as an increase in 
mobility of the cells on the surface of the tumor [1]. 
As a result, the boundaries of the tumor become very 
irregular. This change on tumor morphology, 
associated with additional information, help 
physicians to diagnose cancer stage of development 
[2]. From about 10 years, starting with the seminal 
paper of Landini and Rippin [3], several studies 
indicate that the fractal dimension of tumors is useful 
as an indicative of malignancy. As a continuity of 
previous studies [4], [5], [6], in this work the authors 

propose a solution to investigate tumor roughening 
based on the fractal dimension of a tumor, obtained 
both from specific medical images and from 
computer generated graphical models. The aim is to 
demonstrate both the validity of the tumor growth 
model and the accuracy of the fractal dimension 
discriminator, especially in order to establish the 
initial transition from the benign to the malignant 
stage of a tumor. 
  
 
2 The model of the tumor growth  
 
The characteristics of a differentiated cell are 
normally tightly controlled by a variety of genetic, 
local and hormonal controls. When this control is 
lost and a cell begins to divide excessively, break 
contact with its neighbors and migrate into the extra-
cellular medium, the host is at risk of developing a 
malignant tumor. Such tumors are aggressive, have a 
high metabolic rate, can be hormonally active and 
are able to invade surrounding healthy tissue and 
spread elsewhere in the body. Typically a finger of 
cells from the main tumor mass penetrates the 
basement membrane and begins to invade the 
surrounding stroma. Invasive cells are less adhesive, 
more highly mobile, more metabolically active, and 
more highly mitotic than normal cells. The series of 
changes leading a normal cell to become malignant 
and invasive are related to each other and possibly 

Proc. of the 5th WSEAS Int. Conf. on Non-Linear Analysis, Non-Linear Systems and Chaos, Bucharest, Romania, October 16-18, 2006       63

mailto:radud@isis.pub.ro


occur in a stepwise manner, with each mutation 
following the next. These mutations affect the cell’s 
adhesiveness, its ability to secrete matrix degrading 
enzymes, its capacity for uncontrolled proliferation, 
but in addition exhibit changes in their motility. This 
can be classified into both random movement 
(chemokinesis) and directed movement along 
gradients of either diffusible materials (chemotaxis) 
or fixed substrates (haptotaxis). Due to the 
dissolution of the extra-cellular matrix and the 
movement of the cells into it, the cells find 
themselves in a less dense milieu compared with the 
interior of the solid tumour. Correspondingly, their 
random movement is increased. In addition, the 
reduction or absence of cell–cell contacts by invasive 
cells may be an independent factor in increasing 
random movement through a reduction in contact 
inhibition. 
 
Mathematical modeling provides a means by which 
we may quantify the various phenomena involved in 
the invasion process, and investigate their 
interactions. By using experimental results for the 
various microscopic quantities involved, we may 
build up models which reveal the relationships 
between cellular and biochemical parameters and 
macroscopic phenomena. Previous modeling 
techniques for the invasion process have included 
using sets of coupled reaction–diffusion equations 
for the cells and important groups of extra-cellular 
proteins and nutrients [7]. The inclusion of adhesion 
has proven problematic in this type of model, 
because the reaction–diffusion approach makes the 
inclusion of the stochastic behavior of individual 
cells difficult to treat. In this study, we approach the 
modeling of invasion in a similar manner as in the 
work of Turner and Sherratt [8], which have 
implemented the extended Potts model first proposed 
by Graner and Glazier [9], but is in this case 
developed further for application to malignant 
invasion. The simulation models an individual cell as 
occupying a defined region of a square lattice. 
Another difference is that instead to employ a 
stochastic energy minimization technique to display 
the evolution of the cell mass over time, the 
proposed algorithm determines completely the cell 
motion from the interaction forces between cells and 
the mitotic rate. 
 
The simulation algorithm model a collection of 
biological cells by attaching to each lattice point (i,j) 
of a square lattice a label sij. Adjacent lattice sites 
with the same value sij are defined to lie within the 
same cell. We model the interactions of cell surfaces 
with each other explicitly by defining coupling 

constants Jss’, the size of which quantifies the 
strength of the interaction between adjacent lattice 
points with differing values of sij. The main features 
of the model are the following: 
1) Cell affinity or adhesion is modeled with 
decreased repulsion that depends on the cell types.  
2) Cell motion results from equilibration of the 
interaction forces with other cells. 
3) The visualization of the cellular tissue is generated 
computing the Voronoi polygons associated to each 
particle in the simulation. 
4) The simulation starts from an initial tumor cell in 
a tissue of normal cells. 
5) The initial tumor cell and its descendants have a 
higher division rate than the normal cells and random 
adhesion parameters obtained from a Gauss-
Heaviside distribution. 
6) Cell death is not considered. 
 
Cells interact through a force defined as 
f = (1 - r/r0)(1-αij)       (1) 
Each cell has a repulsive core (1 - r/r0) where r is the 
distance between the two cells and r0 is the target 
cell radius. Cells do not interact if r > 2r0. αij is a 
parameter that models adhesion by decreasing the 
repulsion between cell types i and j. αij ~ 1 imply 
high adhesion and respectively αij ~ 0 imply low 
adhesion. The interaction force between normal cells 
is a function of r only, i.e. they all have the same 
adhesion parameter αn. However the adhesion forces 
of tumor cells are, in general, lower than that of 
normal cells. This feature is introduced in the 
simulation by attributing to each tumor cell a random 
α obtained from a statistical distribution. The 
distribution function of forces of real tumor cells is 
unknown. Thus, for simplicity, we assume that the 
α’s of tumor cells follow a Gaussian distributed 
decrease with standard deviation σ in relation to αn. 
This implies that for a constant r in equation (1), the 
forces of interaction of tumor cells with normal cells 
have a Gauss-Heaviside distribution P(f) as depicted 
in fig 1. The average force between tumor cells and 
normal cells is lower than Fn. 

 
Fig.1 Plot of the Gauss-Heaviside distribution 
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Interactions involving tumor cells require a rule to 
determine the force between normal and tumor cells 
and between tumor cells themselves, since each 
tumor cell has a random α obtained from the Gauss-
Heaviside distribution. We define the value of the 
adhesion parameter between a normal and a tumor 
cell as the α of the tumor cell, and between two 
tumor cells as the geometric mean of the forces of 
interaction between the two cells. 
 
Simulations were run using a wide range of 
parameter values, and the model was found robustly 
to reproduce the phenomenon of ‘‘fingering’’ across 
a wide range of these values. This phenomenon is 
illustrated in Fig. 2. 
 

 
Fig,2 Appearance of a simulated tumor 
 
The surface appearance of many malignancies has 
this morphology, and it corresponds to disease 
severity: benign tumors are smooth, whereas 
aggressive malignancies are ‘‘rough’’. There is a 
correlation between this ‘‘roughness’’ and the 
tumor’s invasive potential: studies of 
photomicrographs of tumor surfaces have succeeded 
in demonstrating self-similarity at different length 
scales, and have noticed a relationship between the 
fractal (Hausdorff) dimension of the tumor surface 
and its invasive potential 
 
3 Fractal dimension and roughness 
 
To measure the fractal dimension and roughness of 
the tumor boundary we select only the cells at the 
boundary of the tumors. We define boundary cells as 
those that have at least one normal neighbor. In fig. 3 
we plot a graph of the fractal dimension Df of the 
interface of the tumors with normal cells as a 
function of σ.  Df was calculated using a box 
counting algorithm [6]. The figure 3 shows an 
increase of Df with σ and a tendency to saturation 
with Df  very close to the maximum value 2, 
implying that for large σ cells at the boundary are 
completely scattered. It is interesting to note that for 

σ = 0 the fractal dimension is slightly larger than 1 
implying that the growth dynamics itself (without 
random adhesion), only cell division and 
rearrangement, contribute to tumor roughness. 

 
 
Fig.3.Plot of the fractal dimension of the boundary 
 
Roughness is a useful quantitative measurement of 
the irregularity of an interface. Here we define it as 
the root-mean-square of the radius of a tumor. 
Tumor roughness w is defined as 

            (2) 
where L is the length of the boundary, ri is the 
distance (from the center of mass of the tumor) of a 
boundary cell and < r > is the average radius of the 
tumor [10]. In Fig. 4 we plot the growth 
exponent β as a function of σ. As expected, β  grows 
with σ. It tends to saturation close to β ~ 1.2. 

 
Fig. 4. Plot of exponent β as a function of σ. 
 
As a conclusion, let accept that σ is a measure of the 
level of error on the forces of the tumor cells 
associated to the error in the expression of the 
adhesion molecules in real cells. σ = 0 implies that 
the adhesion force is expressed correctly and the 
only abnormality of the tumor is the high rate of cell 
division. In this case, we define the tumor as benign. 
For σ > 0 the roughness of the tumor increases and 
some cells start to detach from it. In this case we 
define the tumor as malignant. In figure 5 we show 
the simulated patterns for two different values of σ 
and for two stages of growth.  
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(a)                            (b)  

Fig. 5. Simulated patterns for (a) σ = 0 (benign) and 
(b) σ = 0.9 (malignant) in two stages of growth. 
 
The approximate number of tumor cells in the early 
and late stages is around 500 and 5000, respectively. 
 
4 Experimental results 
 
The simulations are conducted on a 200/ 200 square 
grid, with each cell initially defined to occupy a set 
number of lattice points, equal to the cell’s target 
area, set in all simulations to be 20 pixels. The 
choice of parameter values in the simulations is 
determined by the relationship which we wish to 
study. To quantify the effect of the different 
parameters in the model on the invasion process, we 
concentrate on the parameter dmax which corresponds 
to the maximum depth of invasion (in pixels) on the 
grid. Biologically, dmax is an appropriate parameter to 
study as the maximum depth of invasion corresponds 
to the clinical severity of the disease, the likelihood 
of metastasis having occurred, and the options for 
clinical management. Our initial conditions 
throughout consist of a layer of cells at the top of the 
grid 10 cells thick with an initial (target) volume of 
20 pixels. The boundary conditions are zero flux at 
the top and bottom of the grid and periodic at the left 
and right sides. This corresponds to a spatially 
extended lesion which is invading from an epithelial 
cell lining down through its basement membrane and 
into the surrounding stroma. Zero flux boundary 
conditions at the top are appropriate as cell masses of 
this type are usually localized in the epithelial 
boundary layers coating a lumen, so there is no tissue 
for the cells to move into in that direction. Periodic 
boundary conditions laterally are also appropriate in 
our simulation as the model is intended to examine a 
section through a spatially extended lesion much 

larger in size than could reasonably be modeled on 
our grid. Assuming that the cells are of a size of the 
order of 10 μm, the domain corresponds to a physical 
size of around 0.4 mm. Even the smallest detectable 
malignant lesion has a spatial extent considerably 
greater than this, which underlines the fact that the 
domain should be regarded as only a part of a much 
larger lesion. Periodic boundary conditions laterally 
help reduce boundary effects. Zero flux conditions at 
the base are arbitrarily set as such, as this is the limit 
of the validity of dmax in our model; hence, we stop 
the simulation before the bottom of the grid is 
reached. 
 
The same model can be used to simulate 
proliferation. Malignant cells have a higher 
proliferation rate relative to their normal 
counterparts. Cells are triggered to divide by 
intracellular cascades which start when membrane-
bound integrin receptors bind to extra-cellular matrix 
proteins. In our model, these adhesiveness (and the 
corresponding number of cell surface receptors) is 
quantified through the coupling constants.  The 
alteration in dmax due to the inclusion of proliferation 
in the simulations is illustrated in fig. 6.   

 
Fig. 6. Comparison between the depth of invasion 
including or not including proliferation  
 
Intuitively, one expects proliferation to be 
proinvasive, on the basis that the additional cell 
population will facilitate invasion. However, as one 
can see, within some regions of the parameter space 
dmax is reduced due to proliferation. The explanation 
for this counter-intuitive result is related to the 
morphology of the advancing front. The front is 
created when fingers of invading cells join together 
to form an invading cell mass, when then break its 
contacts with the main cell mass behind it and moves 
on through the extra-cellular matrix. By including 
proliferation in the simulation, the fingers of cells 
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which initially ‘‘anchor’’ this advancing front to the 
main cell mass are thicker (as the cells comprising 
them are dividing) and also remain connected to the 
advancing front for longer (due to cells being pushed 
forward by their dividing and growing neighbors). 
The evidence for this is illustrated in fig. 7, which 
shows the effect of including proliferation on the 
morphology and depth of invasion of the invading 
cells (upper side) in comparison with the situation 
(down side) without proliferation  (apart from the 
inclusion of proliferation, all other parameters are the 
same). The images to the left are obtained after 500 
time units (actually computing iterations) while the 
images to the right are obtained after 2000 time 
units. Cells at the front are spreading out laterally to 
form an invading cell mass, and this mass is 
connected by long, thick fingers of cells to the main 
cell mass behind it. In the simulation with no 
proliferation included, these fingers are not present 
after the same length of time: they have already 
broken and the cells composing them have been 
pulled (under the influence of cell–cell adhesion) 
into either the cell mass in front of or behind them 
(depending on their position in front of or behind the 
point in the string at which the effects of haptotaxis 
and cell–cell adhesion balance).  
 
 

  
 

 
 
Fig. 7. The effect of including proliferation on the 
formation of the advancing front 
 
Hence, one of the potential effects of including 
proliferation is to reduce the depth of invasion of a 
cell mass, although this possibility occurs only in a 
narrow region of the parameter space. 

5 Conclusions and future work 
 
The motivation for this work was to determine the 
relative importance and interrelationships between 
some of the main parameters involved in the 
invasion process, concentrating in particular on the 
influence of changes in cell–cell adhesiveness. In our 
model, changes in the adhesiveness between cells 
and the extra-cellular medium has a greater impact 
on the invasiveness of the cell mass (using the 
maximum depth of invasion after a given time as our 
index of invasiveness) compared with changes in 
cell–cell adhesiveness.  The simulations show that a 
decrease in cell adhesion is sufficient to explain 
tumor roughening and cell detachment. Both result 
from cell displacement due to a locally random 
gradient of adhesion that increases outwards from 
the surface of the tumor and is controlled by the 
standard deviation σ. This supports the hypothesis 
that this process is important in the tumor transition 
from benign to malignant. In the same time it was 
shown that tumor boundary fractal dimension and 
roughness increase with σ and consequently fractal 
dimension can be an useful discriminator between 
the benign and malignant state of the tumor. 
Moreover, the results show that the roughness 
exponent of the tumors do not saturate and grows 
indefinitely with tumor size. In this case the useful 
parameter is the growth exponent β that seems to 
saturate close to 1.2. The inclusion of proliferation in 
the simulation showed that the morphology of the 
invading cell mass was changed by this inclusion, 
usually resulting in the cells invading as a solid mass 
rather than as a succession of ‘‘fingers’’ spreading 
out into the extra-cellular medium. However, for 
some regions of the parameter space, including 
proliferation resulted in a reduction in the 
invasiveness of the tumor.  
 
In the near future we will focus our attention on the 
improvement of the simulation model, by adding 
other control parameters, such as the protease 
expression rate and the coefficient of haptotaxis. The 
assumption that in same cases an increased 
proliferation rate can lead in a reduction of the 
tumour’s invasive potential should be sustained by 
an experimental investigation using in vitro assays. 
In the same time it would be an interesting research 
study to determinate the therapeutic significance of 
our conclusions.  Therapeutic interventions aiming at 
modulating the adhesive properties of the tumor have 
not attracted much attention, but in the light of our 
results we can make some predictions about the 
possible success of any such intervention which may 
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be developed. Such therapy should concentrate on 
strengthening cell–cell adhesion while inhibiting 
cell–ECM adhesion, and could be coupled with an 
additional intervention which inhibits the ability of 
the tumor to secrete proteolytic enzymes. In doing 
so, the cells will be more inclined to remain within 
the body of the main cell mass, as they will be held 
there through being tightly bound to their neighbors 
and through the absence of ECM gradients. The 
development of an intervention which blocks the 
cell–ECM receptors and thus reduces cell–ECM 
adhesion while failing to trigger the intracellular 
cascades which are believed to promote both 
proliferation and enzyme secretion may be an 
optimal strategy for inhibiting malignant invasion. 
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